A Hybrid CI-Based Knowledge Discovery System on Microarray Gene Expression Data

Yuchun Tang, Yuanchen He, Yanqing Zhang, Zhen Huang, Xiaohua Hu, Rajshekhar Sunderraman
{"title":"A Hybrid CI-Based Knowledge Discovery System on Microarray Gene Expression Data","authors":"Yuchun Tang, Yuanchen He, Yanqing Zhang, Zhen Huang, Xiaohua Hu, Rajshekhar Sunderraman","doi":"10.1109/CIBCB.2005.1594894","DOIUrl":null,"url":null,"abstract":"A hybrid Computational Intelligence-based Knowledge Discovery system is presented in this paper. The system works in three phases. In phase 1, many feature selection algorithms are utilized to select informative cancer-related genes from microarray expression data. Compared with other algorithms, our GSVM-RFE algorithm demonstrates superior performance on the microarray expression dataset for AML/ALL classification. Specifically, a compact “ perfect” gene subset is reported. In phase 2, many intelligent computation models are implemented to extract useful knowledge about functions of selected genes to regulate the cancer being studied. Knowledge can ease further biomedical study because of reliable information sources, high prediction accuracy, and easiness to interpret. Currently, knowledge is represented in two formats, Web-based and Rule-based. As a future work, we plan to implement knowledge fusion algorithms in phase 3 to synthesize and consolidate hybrid knowledge into a single knowledge base to provide effective and efficient decision support for cancer diagnosis and drug discovery.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A hybrid Computational Intelligence-based Knowledge Discovery system is presented in this paper. The system works in three phases. In phase 1, many feature selection algorithms are utilized to select informative cancer-related genes from microarray expression data. Compared with other algorithms, our GSVM-RFE algorithm demonstrates superior performance on the microarray expression dataset for AML/ALL classification. Specifically, a compact “ perfect” gene subset is reported. In phase 2, many intelligent computation models are implemented to extract useful knowledge about functions of selected genes to regulate the cancer being studied. Knowledge can ease further biomedical study because of reliable information sources, high prediction accuracy, and easiness to interpret. Currently, knowledge is represented in two formats, Web-based and Rule-based. As a future work, we plan to implement knowledge fusion algorithms in phase 3 to synthesize and consolidate hybrid knowledge into a single knowledge base to provide effective and efficient decision support for cancer diagnosis and drug discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合ci的微阵列基因表达数据知识发现系统
提出了一种基于混合计算智能的知识发现系统。该系统分为三个阶段。在第一阶段,许多特征选择算法被用来从微阵列表达数据中选择信息丰富的癌症相关基因。与其他算法相比,我们的GSVM-RFE算法在AML/ALL微阵列表达数据集上表现出优异的分类性能。具体来说,一个紧凑的“完美”基因子集被报道。在第二阶段,实现了许多智能计算模型,以提取有关所选基因功能的有用知识,以调节所研究的癌症。由于信息来源可靠、预测准确性高、易于解释,知识可以简化进一步的生物医学研究。目前,知识以两种格式表示:基于web的和基于规则的。作为未来的工作,我们计划在第三阶段实现知识融合算法,将混合知识综合并整合成一个单一的知识库,为癌症诊断和药物发现提供有效和高效的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Internet-based Melanoma Diagnostic System - Toward the Practical Application - Network Motifs, Feedback Loops and the Dynamics of Genetic Regulatory Networks Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1