A Traffic Accident Detection Model using Metadata Registry

Yong-Kul Ki, Jin-Woo Kim, D. Baik
{"title":"A Traffic Accident Detection Model using Metadata Registry","authors":"Yong-Kul Ki, Jin-Woo Kim, D. Baik","doi":"10.1109/SERA.2006.8","DOIUrl":null,"url":null,"abstract":"In this research, we suggested a traffic accident detection model and installed a system for automatically detecting, recording, and reporting traffic accidents at intersections. A system with these properties would be beneficial in determining the cause of accidents and the features of the intersection that impact safety. Additionally, we suggested and designed the metadata registry for the system to improve the interoperability. In a field test, the suggested model achieved a false alarm rate (FAR) of 0.34 times 10-6 percent. Considering that a California #7a algorithm (expressway incident detection algorithm) showed a FAR of 0.08 ~ 0.34 percent, our result is a remarkable achievement","PeriodicalId":187207,"journal":{"name":"Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA.2006.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this research, we suggested a traffic accident detection model and installed a system for automatically detecting, recording, and reporting traffic accidents at intersections. A system with these properties would be beneficial in determining the cause of accidents and the features of the intersection that impact safety. Additionally, we suggested and designed the metadata registry for the system to improve the interoperability. In a field test, the suggested model achieved a false alarm rate (FAR) of 0.34 times 10-6 percent. Considering that a California #7a algorithm (expressway incident detection algorithm) showed a FAR of 0.08 ~ 0.34 percent, our result is a remarkable achievement
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元数据注册表的交通事故检测模型
在本研究中,我们提出了一个交通事故检测模型,并安装了一个自动检测、记录和报告十字路口交通事故的系统。具有这些特性的系统将有助于确定事故原因和影响安全的十字路口特征。此外,我们建议并设计了系统的元数据注册表,以提高系统的互操作性。在现场测试中,该模型的误报率(FAR)为0.34 × 10- 6%。考虑到加利福尼亚#7a算法(高速公路事件检测算法)的FAR为0.08 ~ 0.34%,我们的结果是一个了不起的成就
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of Situation-Middleware for TPO metadata based on Event-Condition-Action Rule Risk Management through Architecture Design Specification for Visual Requirements of Work-Centered Software Systems Mock Object Models for Test Driven Development Active Intelligent Service Offer System Addition Environment variable and Local variable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1