M. Schneider, Júlia Santasusagna, Ingrid Anna Maria Magnet, U. Schmid
{"title":"Ex Vivo Blood Viscosity Monitoring with Piezoelectric MEMS Resonators","authors":"M. Schneider, Júlia Santasusagna, Ingrid Anna Maria Magnet, U. Schmid","doi":"10.1109/SENSORS52175.2022.9967277","DOIUrl":null,"url":null,"abstract":"This exploratory work demonstrates the potential of plate-type piezoelectric MEMS resonators for measuring the dynamic viscosity of human blood. These micromachined silicon sensors are operated in roof-tile shaped vibrational modes, featuring high quality factors in liquids. The quality factor of the 17 vibrational mode is used in combination with a sensor calibration procedure which is based on viscosity standards to monitor this fluidic material parameter. We demonstrate, that the MEMS sensor can provide real-time viscosity data over extended periods of time, which may be of high interest in cardiovascular medicine and medical applications such as extracorporal membrane oxygenation (ECMO).","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This exploratory work demonstrates the potential of plate-type piezoelectric MEMS resonators for measuring the dynamic viscosity of human blood. These micromachined silicon sensors are operated in roof-tile shaped vibrational modes, featuring high quality factors in liquids. The quality factor of the 17 vibrational mode is used in combination with a sensor calibration procedure which is based on viscosity standards to monitor this fluidic material parameter. We demonstrate, that the MEMS sensor can provide real-time viscosity data over extended periods of time, which may be of high interest in cardiovascular medicine and medical applications such as extracorporal membrane oxygenation (ECMO).