Statistical Model Checking of Approximate Circuits: Challenges and Opportunities

Josef Strnadel
{"title":"Statistical Model Checking of Approximate Circuits: Challenges and Opportunities","authors":"Josef Strnadel","doi":"10.23919/DATE48585.2020.9116207","DOIUrl":null,"url":null,"abstract":"Many works have shown that approximate circuits may play an important role in the development of resource-efficient electronic systems. This motivates many researchers to propose new approaches for finding an optimal trade-off between the approximation error and resource savings for predefined applications of approximate circuits. The works and approaches, however, focus mainly on design aspects regarding relaxed functional requirements while neglecting further aspects such as signal and parameter dynamics/stochasticity, relaxed/non-functional equivalence, testing or formal verification. This paper aims to take a step ahead by moving towards the formal verification of time-dependent properties of systems based on approximate circuits. Firstly, it presents our approach to modeling such systems by means of stochastic timed automata whereas our approach goes beyond digital, combinational and/or synchronous circuits and is applicable in the area of sequential, analog and/or asynchronous circuits as well. Secondly, the paper shows the principle and advantage of verifying properties of modeled approximate systems by the statistical model checking technique. Finally, the paper evaluates our approach and outlines future research perspectives.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many works have shown that approximate circuits may play an important role in the development of resource-efficient electronic systems. This motivates many researchers to propose new approaches for finding an optimal trade-off between the approximation error and resource savings for predefined applications of approximate circuits. The works and approaches, however, focus mainly on design aspects regarding relaxed functional requirements while neglecting further aspects such as signal and parameter dynamics/stochasticity, relaxed/non-functional equivalence, testing or formal verification. This paper aims to take a step ahead by moving towards the formal verification of time-dependent properties of systems based on approximate circuits. Firstly, it presents our approach to modeling such systems by means of stochastic timed automata whereas our approach goes beyond digital, combinational and/or synchronous circuits and is applicable in the area of sequential, analog and/or asynchronous circuits as well. Secondly, the paper shows the principle and advantage of verifying properties of modeled approximate systems by the statistical model checking technique. Finally, the paper evaluates our approach and outlines future research perspectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似电路的统计模型检验:挑战与机遇
许多工作表明,近似电路可能在资源节约型电子系统的发展中发挥重要作用。这促使许多研究人员提出新的方法,在近似电路的预定义应用中寻找近似误差和资源节约之间的最佳权衡。然而,这些工作和方法主要集中在关于宽松功能需求的设计方面,而忽略了诸如信号和参数动态/随机性、宽松/非功能等效、测试或形式验证等进一步的方面。本文的目的是向前迈出一步,朝着基于近似电路的系统的时间相关性质的正式验证迈进。首先,它介绍了我们通过随机时间自动机对此类系统建模的方法,而我们的方法超越了数字,组合和/或同步电路,并且适用于顺序,模拟和/或异步电路领域。其次,介绍了用统计模型检验技术验证建模近似系统性质的原理和优点。最后,本文评估了我们的方法并概述了未来的研究前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1