SAR interferometrie phase filtering based on wavelet transform and local frequency estimation

Fangfang Li, X. Lin, Yueting Zhang, Donghui Hu, Lijia Huang, C. Ding
{"title":"SAR interferometrie phase filtering based on wavelet transform and local frequency estimation","authors":"Fangfang Li, X. Lin, Yueting Zhang, Donghui Hu, Lijia Huang, C. Ding","doi":"10.1109/APSAR.2015.7306193","DOIUrl":null,"url":null,"abstract":"A novel approach combining the local frequency estimation with wavelet transform is presented to reduce interferometric phase noise for InSAR. First, the maximum likelihood estimator is used to obtain the frequency range of the noisy interferogram. Then, the wavelet transform is employed to obtain the wavelet coefficients of the real and imaginary parts of the complex interferogram. For the wavelet coefficients within the estimated frequency range and that out of the range, the NeighShrink and VisuShrink methods are employed respectively to shrink them. As a result, the noise can be effectively filtered without the loss of detailed information of the interferogram based on the advantages of the two shrinkage methods. The performance of noise reduction and fringe preservation is verified by the experiments with real interferogram.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel approach combining the local frequency estimation with wavelet transform is presented to reduce interferometric phase noise for InSAR. First, the maximum likelihood estimator is used to obtain the frequency range of the noisy interferogram. Then, the wavelet transform is employed to obtain the wavelet coefficients of the real and imaginary parts of the complex interferogram. For the wavelet coefficients within the estimated frequency range and that out of the range, the NeighShrink and VisuShrink methods are employed respectively to shrink them. As a result, the noise can be effectively filtered without the loss of detailed information of the interferogram based on the advantages of the two shrinkage methods. The performance of noise reduction and fringe preservation is verified by the experiments with real interferogram.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换和局部频率估计的SAR干涉相位滤波
提出了一种将局部频率估计与小波变换相结合的方法来降低InSAR干涉相位噪声。首先,利用极大似然估计得到噪声干涉图的频率范围。然后,利用小波变换得到复干涉图实部和虚部的小波系数。对于估计频率范围内的小波系数和估计频率范围外的小波系数,分别采用neighborshrink和VisuShrink方法进行收缩。基于两种收缩方法的优点,可以在不损失干涉图详细信息的情况下有效滤除噪声。通过实际干涉图的实验验证了该方法的降噪和条纹保留性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-static MIMO-SAR three dimensional deformation measurement system Application of microwave imaging in regional deformation monitoring using ground based SAR River detection from SAR images SAR image synthesis with chirp scaling algorithm of 3D CAD model using EM simulator Electronic beam steering using PLL array for radar applications in W-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1