Technological Advancement for a Novel Through-the-Earth Communication System

E. Korolkova, D. Kudinov, K. Artemev, Wisam Farjow, Xavier N Fernando
{"title":"Technological Advancement for a Novel Through-the-Earth Communication System","authors":"E. Korolkova, D. Kudinov, K. Artemev, Wisam Farjow, Xavier N Fernando","doi":"10.1109/CCECE.2018.8447532","DOIUrl":null,"url":null,"abstract":"The ability to communicate is critical aspect of safety in underground mine operations, where conventional radio communication technology is severely limited or not reliable due to disaster. Once again we can determine that the benefits obtained from the principle of the Through-the-Earth (TTE) system can be utilized. This paper presents a new modeling technique in characterizing the electric field strength in connections with the propagation of the waves through the strata of the underground mines. This modeling technique was validated practically in a real mine site environment in Irtishskiy mine, Kazakhstan. Our model considered number of parameters that are critical to performance of the system such as transmitting power, frequency, geometry of antenna and system grounding. To the best of our knowledge, this paper presents a novel analyses and modeling results demonstrating the effects of different grounding systems designs on the wave propagation behaviors in TTE systems. It is evident that this research can be applied in enhancing the performance of the TTE systems and the depth of signal propagations.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The ability to communicate is critical aspect of safety in underground mine operations, where conventional radio communication technology is severely limited or not reliable due to disaster. Once again we can determine that the benefits obtained from the principle of the Through-the-Earth (TTE) system can be utilized. This paper presents a new modeling technique in characterizing the electric field strength in connections with the propagation of the waves through the strata of the underground mines. This modeling technique was validated practically in a real mine site environment in Irtishskiy mine, Kazakhstan. Our model considered number of parameters that are critical to performance of the system such as transmitting power, frequency, geometry of antenna and system grounding. To the best of our knowledge, this paper presents a novel analyses and modeling results demonstrating the effects of different grounding systems designs on the wave propagation behaviors in TTE systems. It is evident that this research can be applied in enhancing the performance of the TTE systems and the depth of signal propagations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型透地通信系统的技术进展
通信能力是矿井井下作业安全的关键方面,常规的无线电通信技术受到严重限制或由于灾害而不可靠。我们可以再次确定,可以利用从贯地系统原理中获得的好处。本文提出了一种新的模拟方法来描述地下矿井中电场强度与波在地层中传播的关系。该建模技术在哈萨克斯坦Irtishskiy矿的实际现场环境中得到了验证。我们的模型考虑了许多对系统性能至关重要的参数,如发射功率、频率、天线几何形状和系统接地。据我们所知,本文提出了一种新的分析和建模结果,展示了不同接地系统设计对TTE系统中波传播行为的影响。结果表明,本研究可用于提高TTE系统的性能和信号传播深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Full Area Coverage Guaranteed, Energy Efficient Network Configuration Strategy for 3D Wireless Sensor Networks Metasurface-Based WPT Rectenna with Extensive Input Power Range in the 900 MHz Wearable Ultrasonic Sensor Using Double-Layer PVDF Films for Monitoring Tissue Motion A Stochastic Programming Model for Resource Allocation in LTE-U Networks Current Spectral Analysis of Broken Rotor Bar Faults for Induction Motors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1