Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, P. Pillai, M. Satyanarayanan
{"title":"Towards wearable cognitive assistance","authors":"Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, P. Pillai, M. Satyanarayanan","doi":"10.1145/2594368.2594383","DOIUrl":null,"url":null,"abstract":"We describe the architecture and prototype implementation of an assistive system based on Google Glass devices for users in cognitive decline. It combines the first-person image capture and sensing capabilities of Glass with remote processing to perform real-time scene interpretation. The system architecture is multi-tiered. It offers tight end-to-end latency bounds on compute-intensive operations, while addressing concerns such as limited battery capacity and limited processing capability of wearable devices. The system gracefully degrades services in the face of network failures and unavailability of distant architectural tiers.","PeriodicalId":131209,"journal":{"name":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"510","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual international conference on Mobile systems, applications, and services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594368.2594383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 510
Abstract
We describe the architecture and prototype implementation of an assistive system based on Google Glass devices for users in cognitive decline. It combines the first-person image capture and sensing capabilities of Glass with remote processing to perform real-time scene interpretation. The system architecture is multi-tiered. It offers tight end-to-end latency bounds on compute-intensive operations, while addressing concerns such as limited battery capacity and limited processing capability of wearable devices. The system gracefully degrades services in the face of network failures and unavailability of distant architectural tiers.