Gesture Classification with Handcrafted Micro-Doppler Features using a FMCW Radar

Yuliang Sun, T. Fei, F. Schliep, N. Pohl
{"title":"Gesture Classification with Handcrafted Micro-Doppler Features using a FMCW Radar","authors":"Yuliang Sun, T. Fei, F. Schliep, N. Pohl","doi":"10.1109/ICMIM.2018.8443507","DOIUrl":null,"url":null,"abstract":"This paper deals with gesture recognition using a 77 GHz FMCW radar system based on the micro-Doppler (μ D) signatures. In addition to the Doppler information, the range information is also available in the FMCW radar. Therefore, it is utilized to filter out the irrelevant targets. We have proposed five micro-Doppler based handcrafted features for gesture recognition. Finally, a simple k-nearest neighbor (k-NN) classifier is applied to evaluate the importance of the five features. The classification results demonstrate that the proposed features can guarantee a promising recognition accuracy.","PeriodicalId":342532,"journal":{"name":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2018.8443507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

This paper deals with gesture recognition using a 77 GHz FMCW radar system based on the micro-Doppler (μ D) signatures. In addition to the Doppler information, the range information is also available in the FMCW radar. Therefore, it is utilized to filter out the irrelevant targets. We have proposed five micro-Doppler based handcrafted features for gesture recognition. Finally, a simple k-nearest neighbor (k-NN) classifier is applied to evaluate the importance of the five features. The classification results demonstrate that the proposed features can guarantee a promising recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手势分类与手工微多普勒特征使用FMCW雷达
本文研究了基于微多普勒(μ D)特征的77 GHz FMCW雷达系统的手势识别。除了多普勒信息外,距离信息也可用于FMCW雷达。因此,它被用来过滤掉不相关的目标。我们提出了五个基于微多普勒的手势识别手工特征。最后,使用一个简单的k近邻(k-NN)分类器来评估五个特征的重要性。分类结果表明,所提出的特征可以保证较好的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instantaneous Actual Motion Estimation with a Single High-Resolution Radar Sensor Ego-Motion Estimation using Distributed Single-Channel Radar Sensors Design and Implementation of a FMCW GPR for UAV-based Mine Detection UAV-Based Ground Penetrating Synthetic Aperture Radar Human Motion Training Data Generation for Radar Based Deep Learning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1