Decomposition methods for the estimation of bare soil surface parameters using fully polarimetric SAR data 1

W. Yuan, Q. Qin, S. Du, Xinyi Shen, Hong-bo Jiang, Yan Ma, Shixiong Liu
{"title":"Decomposition methods for the estimation of bare soil surface parameters using fully polarimetric SAR data 1","authors":"W. Yuan, Q. Qin, S. Du, Xinyi Shen, Hong-bo Jiang, Yan Ma, Shixiong Liu","doi":"10.1109/IGARSS.2010.5653057","DOIUrl":null,"url":null,"abstract":"This study wants to demonstrate that two different polarimetric target decomposition methods can improve SAR data accuracy for estimating the parameters of bare soil surface. To achieve this goal, two experiments are conducted: (1) both Freeman and Cloude decomposition methods are performed on JPL/AIRSAR L-band fully polarimetric data; and (2) Advanced Integral Equation Model (AIEM) is used to simulate backscatting coefficients. The root mean square errors (RMSEs) of σ0hh, σ0vv between original data and AIEM simulated data are 1.96 and 1.25 dB. However, if Cloude method is used to decompose original data, the RMSEs will be reduced to 1.45 and 1.14dB, respectively; for Freeman method, the RMSEs are 1.64 and 1.35 dB. Therefore, polarimetric target decomposition compensation, especially Cloude method, can help to improve the accuracy of SAR data for estimating the parameters of bare soil surface.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5653057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study wants to demonstrate that two different polarimetric target decomposition methods can improve SAR data accuracy for estimating the parameters of bare soil surface. To achieve this goal, two experiments are conducted: (1) both Freeman and Cloude decomposition methods are performed on JPL/AIRSAR L-band fully polarimetric data; and (2) Advanced Integral Equation Model (AIEM) is used to simulate backscatting coefficients. The root mean square errors (RMSEs) of σ0hh, σ0vv between original data and AIEM simulated data are 1.96 and 1.25 dB. However, if Cloude method is used to decompose original data, the RMSEs will be reduced to 1.45 and 1.14dB, respectively; for Freeman method, the RMSEs are 1.64 and 1.35 dB. Therefore, polarimetric target decomposition compensation, especially Cloude method, can help to improve the accuracy of SAR data for estimating the parameters of bare soil surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全极化SAR数据估算裸露土壤表面参数的分解方法
本研究旨在证明两种不同的极化目标分解方法可以提高估算裸露土壤表面参数的SAR数据精度。为了实现这一目标,进行了两个实验:(1)对JPL/AIRSAR l波段全偏振数据进行了Freeman和cloud分解方法;(2)采用先进积分方程模型(AIEM)模拟后向散射系数。原始数据σ0hh、σ0vv与模拟数据的均方根误差(rmse)分别为1.96和1.25 dB。但是,如果使用cloud方法对原始数据进行分解,rmse将分别降低到1.45和1.14dB;Freeman方法的均方根误差分别为1.64和1.35 dB。因此,利用极化目标分解补偿,尤其是cloud方法,可以提高SAR数据估算裸土表面参数的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One micron laser technology advancements at GSFC Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data The microasar experiment on CASIE-09 A method to estimate Snow Water Equivalent using multi-angle X-band radar observations Detection and correction of spectral and spatial misregistrations for hyperspectral data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1