Accurately modeling speculative instruction fetching in trace-driven simulation

Ravi Bhargava, L. John, Francisco Matus
{"title":"Accurately modeling speculative instruction fetching in trace-driven simulation","authors":"Ravi Bhargava, L. John, Francisco Matus","doi":"10.1109/PCCC.1999.749422","DOIUrl":null,"url":null,"abstract":"Performance evaluation of modern, highly speculative, out-of-order microprocessors and the corresponding production of detailed, valid, accurate results have become serious challenges. A popular evaluation methodology is trace-driven simulation which provides the advantage of a highly portable simulator that is independent of the constraints of the trace generation system. While developing and maintaining a trace-driven simulator is relatively easier than other alternatives, a primary drawback is the inability to accurately simulate speculative instruction fetching and subsequent execution. Fetching from an incorrect path occurs often in a speculative processor, however it is difficult to capture this information in a trace. This paper investigates a scheme to accurately model instruction fetching within a trace-driven framework. This is accomplished by recreating an approximate copy of the object code segment, which we call resurrected code, using a preliminary pass through the trace. We discuss a fast and memory-efficient method for implementing this resurrected code.","PeriodicalId":211210,"journal":{"name":"1999 IEEE International Performance, Computing and Communications Conference (Cat. No.99CH36305)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International Performance, Computing and Communications Conference (Cat. No.99CH36305)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCC.1999.749422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Performance evaluation of modern, highly speculative, out-of-order microprocessors and the corresponding production of detailed, valid, accurate results have become serious challenges. A popular evaluation methodology is trace-driven simulation which provides the advantage of a highly portable simulator that is independent of the constraints of the trace generation system. While developing and maintaining a trace-driven simulator is relatively easier than other alternatives, a primary drawback is the inability to accurately simulate speculative instruction fetching and subsequent execution. Fetching from an incorrect path occurs often in a speculative processor, however it is difficult to capture this information in a trace. This paper investigates a scheme to accurately model instruction fetching within a trace-driven framework. This is accomplished by recreating an approximate copy of the object code segment, which we call resurrected code, using a preliminary pass through the trace. We discuss a fast and memory-efficient method for implementing this resurrected code.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跟踪驱动仿真中推测指令提取的精确建模
现代的、高度投机的、无序的微处理器的性能评价和相应的详细的、有效的、准确的结果的产生已经成为严峻的挑战。一种流行的评估方法是跟踪驱动仿真,它提供了一个高度可移植的模拟器,它独立于跟踪生成系统的约束。虽然开发和维护跟踪驱动的模拟器比其他替代方法相对容易,但主要缺点是无法准确模拟推测指令获取和后续执行。在推测处理器中,从不正确的路径获取信息经常发生,但是很难在跟踪中捕获此信息。本文研究了一种在跟踪驱动框架下精确建模指令获取的方案。这是通过重新创建目标代码段的近似副本来实现的,我们将其称为复活代码,并使用通过跟踪的初步传递。我们将讨论一种快速且内存高效的方法来实现这种复活的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optical layer protocol for lightpath management in WDM networks PDATS II: improved compression of address traces An adaptive distributed channel allocation strategy for mobile cellular networks Validation of Turandot, a fast processor model for microarchitecture exploration Sectored renaming for superscalar microprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1