EEG-based automatic epilepsy diagnosis using the instantaneous frequency with sub-band energies

Mohammad Fani, G. Azemi, B. Boashash
{"title":"EEG-based automatic epilepsy diagnosis using the instantaneous frequency with sub-band energies","authors":"Mohammad Fani, G. Azemi, B. Boashash","doi":"10.1109/WOSSPA.2011.5931447","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for classifying the electroencephalogram (EEG) signals as normal or abnormal. This method uses features derived from the instantaneous frequency (IF) and energies of EEG signals in different spectral sub-bands. Results of applying the method to a database of real signals reveal that, for the given classification task, the selected features consistently exhibit a high degree of discrimination between the EEG signals collected from healthy and epileptic patients. The analysis of the effect of window length used during feature extraction indicates that features extracted from EEG segments as short as 5 seconds achieve a high average total accuracy of 95.3%.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a novel approach for classifying the electroencephalogram (EEG) signals as normal or abnormal. This method uses features derived from the instantaneous frequency (IF) and energies of EEG signals in different spectral sub-bands. Results of applying the method to a database of real signals reveal that, for the given classification task, the selected features consistently exhibit a high degree of discrimination between the EEG signals collected from healthy and epileptic patients. The analysis of the effect of window length used during feature extraction indicates that features extracted from EEG segments as short as 5 seconds achieve a high average total accuracy of 95.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的瞬时频率子带能量癫痫自动诊断
提出了一种新的脑电图信号正常与异常分类方法。该方法利用脑电信号在不同谱子波段的瞬时频率和能量特征。将该方法应用于真实信号数据库的结果表明,对于给定的分类任务,所选择的特征在从健康患者和癫痫患者收集的脑电图信号之间一致地表现出高度的区分。对特征提取过程中窗口长度的影响分析表明,从短至5秒的脑电信号片段中提取的特征平均总准确率达到95.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance limitations of an optical RZ-DPSK transmission system affected by frequency chirp, chromatic dispersion and polarization mode dispersion MPEG-4 AVC re-encoding for watermarking purposes Some issues on cognitive radio and UWB technology convergence for enabling green networks Adaptive blind equalization for QAM modulated signals in the presence of frequency offset Elliptic Curve Cryptography and its applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1