Optimum Analysis of Imbalanced Network for Intrusion Detection using LSTM Convolution Technique

Monika Meena, Rakesh Kumar Tiwari
{"title":"Optimum Analysis of Imbalanced Network for Intrusion Detection using LSTM Convolution Technique","authors":"Monika Meena, Rakesh Kumar Tiwari","doi":"10.1109/ICAAIC56838.2023.10140458","DOIUrl":null,"url":null,"abstract":"Analyzing network packets to determine whether they are genuine or suspicious are called “Intrusion Detection.” The significant difficulties associated with this space incorporates the tremendous volume of information for preparing and the quick and streaming information that will be accommodated the expectation interaction. In addition, the intrusion detection model faces additional difficulties as a result of the domain's inherent data imbalance. The classification accuracy and other parameters of enhanced LSTM are contrasted with those of conventional deep learning and other machine learning methods in this study. In addition to classifying the tweets, this framework can be used to investigate user attitudes toward Indian higher education. Two algorithms form the basis of the proposed framework: Using the evolutionary algorithm to improve LSTM. Because the standard LSTM algorithm can select parameter values at random, the enhanced LSTM algorithm uses the evolutionary algorithm to enhance its functionality.","PeriodicalId":267906,"journal":{"name":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAAIC56838.2023.10140458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing network packets to determine whether they are genuine or suspicious are called “Intrusion Detection.” The significant difficulties associated with this space incorporates the tremendous volume of information for preparing and the quick and streaming information that will be accommodated the expectation interaction. In addition, the intrusion detection model faces additional difficulties as a result of the domain's inherent data imbalance. The classification accuracy and other parameters of enhanced LSTM are contrasted with those of conventional deep learning and other machine learning methods in this study. In addition to classifying the tweets, this framework can be used to investigate user attitudes toward Indian higher education. Two algorithms form the basis of the proposed framework: Using the evolutionary algorithm to improve LSTM. Because the standard LSTM algorithm can select parameter values at random, the enhanced LSTM algorithm uses the evolutionary algorithm to enhance its functionality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM卷积技术的入侵检测不平衡网络优化分析
分析网络数据包以确定它们是真实的还是可疑的被称为“入侵检测”。与此空间相关的重大困难包括用于准备的大量信息以及将适应预期交互的快速和流式信息。此外,由于该领域固有的数据不平衡性,使得入侵检测模型面临着额外的困难。本研究将增强LSTM的分类精度等参数与传统深度学习和其他机器学习方法进行对比。除了对推文进行分类之外,这个框架还可以用来调查用户对印度高等教育的态度。两种算法构成了该框架的基础:使用进化算法改进LSTM。由于标准LSTM算法可以随机选择参数值,因此增强的LSTM算法使用进化算法来增强其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mosquitoes Classification using EfficientNetB4 Transfer Learning Model A Novel Framework in Scheduling Packets for Energy-Efficient Bandwidth Allocation in Wireless Networks Malware Classification using Malware Visualization and Deep Learning Automatic Vehicle Classification and Speed Tracking Predicting and Analyzing Air Quality Features Effectively using a Hybrid Machine Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1