A review on identification of atrial septal defect using deep learning

Hima Vijayan V P, Prof.(Dr.)Abdul Rahiman, Dr. Lizy Abraham, Dr. Deepambika V.A
{"title":"A review on identification of atrial septal defect using deep learning","authors":"Hima Vijayan V P, Prof.(Dr.)Abdul Rahiman, Dr. Lizy Abraham, Dr. Deepambika V.A","doi":"10.54228/mjaret02220002","DOIUrl":null,"url":null,"abstract":"The third most prevalent kind of congenital cardiac disease is atrial septal defects (ASD). Even with extensive shunts, the majority of individuals remain asymptomatic throughout their infancy. Echocardiogram, Chest X-ray, Electrocardiogram (ECG), Cardiac catheterization, MRI, and CT scan may all be used to detect the abnormality. Deep learning can be employed for automated estimation of the defect from the test result. The goal of this review paper is first to provide an insight into ASD, the methods for diagnosis, the application of deep learning models for distinguishing the defect, defect detection accuracy and algorithm parameters.","PeriodicalId":324503,"journal":{"name":"Multidisciplinary Journal for Applied Research in Engineering and Technology","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidisciplinary Journal for Applied Research in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54228/mjaret02220002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The third most prevalent kind of congenital cardiac disease is atrial septal defects (ASD). Even with extensive shunts, the majority of individuals remain asymptomatic throughout their infancy. Echocardiogram, Chest X-ray, Electrocardiogram (ECG), Cardiac catheterization, MRI, and CT scan may all be used to detect the abnormality. Deep learning can be employed for automated estimation of the defect from the test result. The goal of this review paper is first to provide an insight into ASD, the methods for diagnosis, the application of deep learning models for distinguishing the defect, defect detection accuracy and algorithm parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用深度学习识别房间隔缺损的研究进展
第三种最常见的先天性心脏病是房间隔缺损(ASD)。即使有广泛的分流,大多数人在婴儿期仍无症状。超声心动图、胸片、心电图、心导管、核磁共振和CT扫描都可用于检测异常。深度学习可以用于从测试结果中自动估计缺陷。本文的目的是首先介绍ASD、诊断方法、深度学习模型在缺陷识别中的应用、缺陷检测的准确性和算法参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Refined Big Data Clustering Algorithm using Power Method on Block Chain Network A Review of Inventory Management of Small-Scale Enterprise in India A STUDY ON CHALLENGES IN HUMAN RESOURCE MANAGEMENT Designing A Metamaterial Inspired MIMO Antenna For Multi-Band Application Improved PSO Algorithm with Encoding And Decoding To Enhance The Network Lifetime In Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1