Semantic Evidential Grid Mapping based on Stereo Vision

Sven Richter, Johannes Beck, Sascha Wirges, C. Stiller
{"title":"Semantic Evidential Grid Mapping based on Stereo Vision","authors":"Sven Richter, Johannes Beck, Sascha Wirges, C. Stiller","doi":"10.1109/MFI49285.2020.9235217","DOIUrl":null,"url":null,"abstract":"Accurately estimating the current state of local traffic scenes is a crucial component of automated vehicles. The desired representation may include static and dynamic traffic participants, details on free space and drivability, but also information on the semantics. Multi-layer grid maps allow to include all these information in a common representation. In this work, we present an improved method to estimate a semantic evidential multi-layer grid map using depth from stereo vision paired with pixel-wise semantically annotated images. The error characteristics of the depth from stereo is explicitly modeled when transferring pixel labels from the image to the grid map space. We achieve accurate and dense mapping results by incorporating a disparity-based ground surface estimation in the inverse perspective mapping. The proposed method is validated on our experimental vehicle in challenging urban traffic scenarios.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Accurately estimating the current state of local traffic scenes is a crucial component of automated vehicles. The desired representation may include static and dynamic traffic participants, details on free space and drivability, but also information on the semantics. Multi-layer grid maps allow to include all these information in a common representation. In this work, we present an improved method to estimate a semantic evidential multi-layer grid map using depth from stereo vision paired with pixel-wise semantically annotated images. The error characteristics of the depth from stereo is explicitly modeled when transferring pixel labels from the image to the grid map space. We achieve accurate and dense mapping results by incorporating a disparity-based ground surface estimation in the inverse perspective mapping. The proposed method is validated on our experimental vehicle in challenging urban traffic scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于立体视觉的语义证据网格映射
准确地估计当地交通场景的现状是自动驾驶汽车的关键组成部分。所需的表示可能包括静态和动态交通参与者、自由空间和可驾驶性的详细信息,以及语义信息。多层网格映射允许在一个公共表示中包含所有这些信息。在这项工作中,我们提出了一种改进的方法,使用立体视觉的深度与像素级语义注释图像配对来估计语义证据多层网格地图。在将像素标签从图像转移到网格地图空间时,明确地模拟了立体深度的误差特征。我们通过在反透视图中结合基于差值的地面估计来获得准确和密集的制图结果。在具有挑战性的城市交通场景中,我们的实验车辆验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1