Community Detection Metrics and Algorithms in Social Networks

Himansu Sekhar Pattanayak, H. Verma, A. L. Sangal
{"title":"Community Detection Metrics and Algorithms in Social Networks","authors":"Himansu Sekhar Pattanayak, H. Verma, A. L. Sangal","doi":"10.1109/ICSCCC.2018.8703215","DOIUrl":null,"url":null,"abstract":"Community detection is one of the key areas of social network analysis. There are various community detection algorithms available in the literature. Numerous community metrics are also available to evaluate the detected communities. In our study, by using synthetic networks, we compare between four well known community metrics, namely; modularity, conductance, coverage and performance. We also compare seven different community detection algorithms based on above mentioned parameters.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Community detection is one of the key areas of social network analysis. There are various community detection algorithms available in the literature. Numerous community metrics are also available to evaluate the detected communities. In our study, by using synthetic networks, we compare between four well known community metrics, namely; modularity, conductance, coverage and performance. We also compare seven different community detection algorithms based on above mentioned parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网络中的社区检测指标和算法
社区检测是社会网络分析的关键领域之一。文献中有各种各样的社区检测算法。还有许多社区指标可用于评估检测到的社区。在我们的研究中,通过使用合成网络,我们比较了四个众所周知的社区指标,即;模块化、电导、覆盖和性能。我们还比较了基于上述参数的7种不同的社区检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1