Deep or statistical: an empirical study of traffic predictions on multiple time scales

Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang
{"title":"Deep or statistical: an empirical study of traffic predictions on multiple time scales","authors":"Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang","doi":"10.1145/3546037.3546048","DOIUrl":null,"url":null,"abstract":"Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度或统计:对多个时间尺度的交通预测进行实证研究
交通预测的目的是在过去观测的基础上预测未来的交通水平。本文对校园轨迹在不同时间尺度上的交通预测进行了实证研究,得到以下结论:1)深度学习在较粗的时间尺度上表现良好;2)当时间粒度较细或数据不足时,统计模型和回归模型表现较好;3)对于一周的跟踪,5分钟的粒度具有最强的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oakestra Enabling IoT self-localization using ambient 5G mmWave signals RoMA: rotating MAC address for privacy protection Accelerating kubernetes with in-network caching TCP-INT: lightweight network telemetry with TCP transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1