{"title":"Deep or statistical: an empirical study of traffic predictions on multiple time scales","authors":"Yu Qiao, Chengxiang Li, Shuzheng Hao, Junying Wu, Liang Zhang","doi":"10.1145/3546037.3546048","DOIUrl":null,"url":null,"abstract":"Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Traffic prediction aims to forecast the future traffic level based on past observations. In this paper, we conduct an empirical study of traffic prediction for a campus trace on different time scales and get the following conclusions: 1) deep learning performs well on coarser time scales; 2) with a finer-granularity of time or insufficient data, statistical and regressive models outperform; 3) For a one-week trace, the granularity of 5 minutes has the strongest predictability.