Coarse-Level Perception and Fine-Level Refinement Guided Fully Convolutional Network for Retinal Vessel Segmentation

Hongyu Wang, Nan Mu, Hengyu Yang, Sun Mao
{"title":"Coarse-Level Perception and Fine-Level Refinement Guided Fully Convolutional Network for Retinal Vessel Segmentation","authors":"Hongyu Wang, Nan Mu, Hengyu Yang, Sun Mao","doi":"10.1109/ICCCS52626.2021.9449210","DOIUrl":null,"url":null,"abstract":"The observation of blood vessels in human eyes is crucial for diagnosing the ophthalmological diseases. Due to the uneven illumination and low contrast of retinal images, existing retinal vessel segmentation techniques tend to miss fine vessels and the edges of faint vessels, which is very unfavourable for screening and diagnosing various diseases. To mitigate this problem, this paper proposes a coarse-level perception and fine-level refinement guided fully convolutional network for robust retinal vessel segmentation, which progressively integrate the complementary fine-level and coarse-level information of multilevel pyramid features. We develop a global semantic awareness (GSA) module and a local detail elaboration (LDE) module to help further improve the localization of retinal vessels and the refinement of small vessel branches, respectively. Extensive experiments on DRIVE dataset verify the competitive performance of the proposed model in comparison with seven state-of-the-art methods from the perspective of eight evaluation metrics.","PeriodicalId":376290,"journal":{"name":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS52626.2021.9449210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The observation of blood vessels in human eyes is crucial for diagnosing the ophthalmological diseases. Due to the uneven illumination and low contrast of retinal images, existing retinal vessel segmentation techniques tend to miss fine vessels and the edges of faint vessels, which is very unfavourable for screening and diagnosing various diseases. To mitigate this problem, this paper proposes a coarse-level perception and fine-level refinement guided fully convolutional network for robust retinal vessel segmentation, which progressively integrate the complementary fine-level and coarse-level information of multilevel pyramid features. We develop a global semantic awareness (GSA) module and a local detail elaboration (LDE) module to help further improve the localization of retinal vessels and the refinement of small vessel branches, respectively. Extensive experiments on DRIVE dataset verify the competitive performance of the proposed model in comparison with seven state-of-the-art methods from the perspective of eight evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粗层次感知和精细层次改进的全卷积网络视网膜血管分割
对人眼血管的观察是诊断眼科疾病的关键。由于视网膜图像光照不均匀,对比度不高,现有的视网膜血管分割技术容易漏掉细小血管和微弱血管的边缘,这对各种疾病的筛查和诊断非常不利。为了解决这一问题,本文提出了一种基于粗层次感知和精细层次改进的全卷积鲁棒视网膜血管分割网络,该网络将多层金字塔特征的细层次和粗层次互补信息逐步融合。我们开发了一个全局语义感知(GSA)模块和一个局部细节细化(LDE)模块,分别帮助进一步提高视网膜血管的定位和小血管分支的细化。在DRIVE数据集上进行的大量实验从八个评估指标的角度验证了所提出模型与七种最先进方法的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Measuring Data Fusion Based on EMBET Real Time Noise Power Estimation for Single Carrier Frequency Domain Equalization The CPDA Detector for the MIMO OCDM System A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for UAV Swarm A Network Topology Awareness Based Probabilistic Broadcast Protocol for Data Transmission in Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1