Temperature time series: Pattern analysis and forecasting

M. Barbosa, António M. Lopes
{"title":"Temperature time series: Pattern analysis and forecasting","authors":"M. Barbosa, António M. Lopes","doi":"10.1109/EXPAT.2017.7984416","DOIUrl":null,"url":null,"abstract":"This paper uses time-frequency methods and neural networks for the analysis and forecasting of indoor temperature time series. In a first phase, the time series are processed by means of the Fourier transform and the empirical mode decomposition methods to unveil temporal patterns embedded in the data. In a second phase, neural networks are adopted for forecasting future values. The results obtained illustrate the effectiveness of the tools used and motivate further developments based on time-frequency techniques for designing the NN forecasting approach.","PeriodicalId":283954,"journal":{"name":"2017 4th Experiment@International Conference (exp.at'17)","volume":"12 19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Experiment@International Conference (exp.at'17)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EXPAT.2017.7984416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper uses time-frequency methods and neural networks for the analysis and forecasting of indoor temperature time series. In a first phase, the time series are processed by means of the Fourier transform and the empirical mode decomposition methods to unveil temporal patterns embedded in the data. In a second phase, neural networks are adopted for forecasting future values. The results obtained illustrate the effectiveness of the tools used and motivate further developments based on time-frequency techniques for designing the NN forecasting approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度时间序列:模式分析和预测
本文采用时频法和神经网络对室内温度时间序列进行分析和预测。在第一阶段,通过傅里叶变换和经验模态分解方法对时间序列进行处理,以揭示嵌入数据中的时间模式。在第二阶段,采用神经网络预测未来值。所得结果说明了所使用工具的有效性,并激励了基于时频技术设计神经网络预测方法的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud ecosystem for supporting inquiry learning with online labs: Creation, personalization, and exploitation Using marker based augmented reality and natural user interface for interactive remote experiments Mixed reality voice training for lecturers Adding augmented reality to laboratory experimentation Collaborative BIM environment as a support to conflict analysis in building design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1