Introduction of a new approach to interpret pulmonary function tests (PFT) based on Machine learning and Game theory

N. Le-Dong, T. Hua-Huy, M. Topalovic, A. Dinh-Xuan
{"title":"Introduction of a new approach to interpret pulmonary function tests (PFT) based on Machine learning and Game theory","authors":"N. Le-Dong, T. Hua-Huy, M. Topalovic, A. Dinh-Xuan","doi":"10.1183/13993003.congress-2019.pa4726","DOIUrl":null,"url":null,"abstract":"Objective: We introduce a new interpretation method for PFT data. Methods: Our new method consists of 3 steps:\n To build a diagnostic rule for a specific target from multi-PFT parameters. To estimate the Shapley-score, a game-theory based metric which measures the importance of each PFT index by comparing the model’s predictions with and without that index. To generate the interpretation, indicating the contribution level of each parameter to the positive/negative diagnosis. We applied this method to detect interstitial lung disease (ILD) in patients with systemic sclerosis. A machine learning diagnostic rule was developed from data of 300 patients undergoing 5 PFT techniques. Results: Validated on unseen data (n=100), the rule showed a good clinical performance (Sensitivity=0.86, Specificity=0.89, Positive and negative Likelihood-ratios of 7.86 and 0.16 respectively). At population level, the interpretation revealed that AV, TLCO-NO and FEV1 were the most important contributors to positive diagnosis. Personalized interpretations (Fig. 1) allow to verify the model’s plausibility in difficult cases with false negative/positive diagnosis and identify individual patterns of lung function impairments. Conclusion: Compared to the conventional approaches, our new method offers more advantages including ability of multivariate interpretation and valuable information for personalized treatment plan.","PeriodicalId":178396,"journal":{"name":"ILD/DPLD of known origin","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ILD/DPLD of known origin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1183/13993003.congress-2019.pa4726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We introduce a new interpretation method for PFT data. Methods: Our new method consists of 3 steps: To build a diagnostic rule for a specific target from multi-PFT parameters. To estimate the Shapley-score, a game-theory based metric which measures the importance of each PFT index by comparing the model’s predictions with and without that index. To generate the interpretation, indicating the contribution level of each parameter to the positive/negative diagnosis. We applied this method to detect interstitial lung disease (ILD) in patients with systemic sclerosis. A machine learning diagnostic rule was developed from data of 300 patients undergoing 5 PFT techniques. Results: Validated on unseen data (n=100), the rule showed a good clinical performance (Sensitivity=0.86, Specificity=0.89, Positive and negative Likelihood-ratios of 7.86 and 0.16 respectively). At population level, the interpretation revealed that AV, TLCO-NO and FEV1 were the most important contributors to positive diagnosis. Personalized interpretations (Fig. 1) allow to verify the model’s plausibility in difficult cases with false negative/positive diagnosis and identify individual patterns of lung function impairments. Conclusion: Compared to the conventional approaches, our new method offers more advantages including ability of multivariate interpretation and valuable information for personalized treatment plan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介绍一种基于机器学习和博弈论的新方法来解释肺功能测试(PFT)
目的:介绍一种新的PFT数据解释方法。方法:该方法包括3个步骤:从多个pft参数中建立针对特定目标的诊断规则;Shapley-score是一种基于博弈论的指标,通过比较模型在有和没有该指数的情况下的预测,来衡量每个PFT指数的重要性。生成解释,表明每个参数对阳性/阴性诊断的贡献水平。我们应用这种方法检测系统性硬化症患者的间质性肺疾病(ILD)。从300名接受5种PFT技术的患者的数据中开发了机器学习诊断规则。结果:未见数据(n=100)验证,该规则具有良好的临床效果(敏感性为0.86,特异性为0.89,阳性似然比为7.86,阴性似然比为0.16)。在人群水平上,解释显示AV, TLCO-NO和FEV1是阳性诊断的最重要因素。个性化解释(图1)允许在假阴性/阳性诊断的困难病例中验证模型的合理性,并识别肺功能损伤的个体模式。结论:与传统方法相比,新方法具有多变量解释能力和个性化治疗方案提供有价值的信息等优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prevalence and associated risk factors of post covid-19 interstitial lung disease; An emerging challenge to pulmonologists Squeaks in hypersensitivity pneumonitis: prevalence and clinical correlates Utility of inhalation challenge test using avian egg for hypersensitivity pneumonia Effects of nintedanib in patients with systemic sclerosis-associated ILD (SSc-ILD) and differing FVC at baseline: the SENSCIS trial Peptide ToAP3 from T. obscurus interferes with idiopathic pulmonary fibrosis progression in murine model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1