Using Sensor Metadata Streams to Identify Topics of Local Events in the City

M. Albakour, C. Macdonald, I. Ounis
{"title":"Using Sensor Metadata Streams to Identify Topics of Local Events in the City","authors":"M. Albakour, C. Macdonald, I. Ounis","doi":"10.1145/2766462.2767837","DOIUrl":null,"url":null,"abstract":"In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study the emerging Information Retrieval (IR) task of local event retrieval using sensor metadata streams. Sensor metadata streams include information such as the crowd density from video processing, audio classifications, and social media activity. We propose to use these metadata streams to identify the topics of local events within a city, where each event topic corresponds to a set of terms representing a type of events such as a concert or a protest. We develop a supervised approach that is capable of mapping sensor metadata observations to an event topic. In addition to using a variety of sensor metadata observations about the current status of the environment as learning features, our approach incorporates additional background features to model cyclic event patterns. Through experimentation with data collected from two locations in a major Spanish city, we show that our approach markedly outperforms an alternative baseline. We also show that modelling background information improves event topic identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用传感器元数据流来识别城市本地事件的主题
本文研究了基于传感器元数据流的信息检索(Information Retrieval, IR)任务。传感器元数据流包括来自视频处理、音频分类和社交媒体活动的人群密度等信息。我们建议使用这些元数据流来识别城市中本地事件的主题,其中每个事件主题对应于一组表示音乐会或抗议等事件类型的术语。我们开发了一种监督方法,能够将传感器元数据观测映射到事件主题。除了使用关于环境当前状态的各种传感器元数据观测作为学习特征外,我们的方法还结合了额外的背景特征来模拟循环事件模式。通过对从西班牙一个主要城市的两个地点收集的数据进行实验,我们表明我们的方法明显优于替代基线。我们还表明,建模背景信息提高了事件主题识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularised Cross-Modal Hashing Adapted B-CUBED Metrics to Unbalanced Datasets Incorporating Non-sequential Behavior into Click Models Time Pressure in Information Search Modeling Multi-query Retrieval Tasks Using Density Matrix Transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1