Facial action tracking using particle filters and active appearance models

S. Hamlaoui, F. Davoine
{"title":"Facial action tracking using particle filters and active appearance models","authors":"S. Hamlaoui, F. Davoine","doi":"10.1145/1107548.1107592","DOIUrl":null,"url":null,"abstract":"Tracking a face and its facial features in a video sequence is a challenging problem in computer vision. In this view, we propose a stochastic tracking system based on a particle- filtering scheme. In this paradigm, the unobserved state includes global face pose and appearance parameters coding both shape and texture information of the face. The adopted observations distribution is derived from an Active Appearance Model (AAM). The transition distribution and the particles number are adaptive in the sense that they are guided by an AAM deterministic search. This optimization stage adjusts the explored area of the state space to the quality of the prediction and enables a substantial gain in computing time. The observation model uses a robust distance measure in order to account for occlusions. Experiments on real video show encouraging results.","PeriodicalId":391548,"journal":{"name":"sOc-EUSAI '05","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"sOc-EUSAI '05","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1107548.1107592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Tracking a face and its facial features in a video sequence is a challenging problem in computer vision. In this view, we propose a stochastic tracking system based on a particle- filtering scheme. In this paradigm, the unobserved state includes global face pose and appearance parameters coding both shape and texture information of the face. The adopted observations distribution is derived from an Active Appearance Model (AAM). The transition distribution and the particles number are adaptive in the sense that they are guided by an AAM deterministic search. This optimization stage adjusts the explored area of the state space to the quality of the prediction and enables a substantial gain in computing time. The observation model uses a robust distance measure in order to account for occlusions. Experiments on real video show encouraging results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用粒子滤波和主动外观模型的面部动作跟踪
在视频序列中跟踪人脸及其面部特征是计算机视觉中的一个具有挑战性的问题。在此基础上,我们提出了一种基于粒子滤波的随机跟踪系统。在该范式中,未观察状态包括编码人脸形状和纹理信息的全局人脸姿态和外观参数。所采用的观测分布是由一个活动外观模型(AAM)推导出来的。跃迁分布和粒子数是自适应的,因为它们是由AAM确定性搜索引导的。这个优化阶段根据预测的质量调整状态空间的探索区域,并使计算时间大大增加。观测模型使用鲁棒距离测量来考虑遮挡。在真实视频上的实验显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Task planning for human-robot interaction Gesture spotting using wrist worn microphone and 3-axis accelerometer Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator Users want simple control over device selection User requirements for intelligent home environments: a scenario-driven approach and empirical cross-cultural study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1