A memetic hunting search algorithm for the traveling salesman problem

Amine Agharghor, M. E. Riffi, Faycal Chebihi
{"title":"A memetic hunting search algorithm for the traveling salesman problem","authors":"Amine Agharghor, M. E. Riffi, Faycal Chebihi","doi":"10.1109/CIST.2016.7805043","DOIUrl":null,"url":null,"abstract":"Since 1930s, traveling salesman problem is still one of the most studied problems in optimization. It started to be used as a benchmark for the new optimization methods that solves the combinatorial optimization problem NP-hard. This paper proposes an assessment of a memetic Hunting Search algorithm that uses a 2-Opt local search for solving the traveling salesman problem. Hunting Search is an evolutionary algorithm inspired by the method of group hunting of predatory animals. To show the quality of the memetic algorithm, it has been checked on a set of ten benchmark TSPLib instances and it outperforms the results obtained with previous Hunting Search algorithm.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7805043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Since 1930s, traveling salesman problem is still one of the most studied problems in optimization. It started to be used as a benchmark for the new optimization methods that solves the combinatorial optimization problem NP-hard. This paper proposes an assessment of a memetic Hunting Search algorithm that uses a 2-Opt local search for solving the traveling salesman problem. Hunting Search is an evolutionary algorithm inspired by the method of group hunting of predatory animals. To show the quality of the memetic algorithm, it has been checked on a set of ten benchmark TSPLib instances and it outperforms the results obtained with previous Hunting Search algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旅行商问题的模因狩猎搜索算法
自20世纪30年代以来,旅行商问题一直是最优化中研究最多的问题之一。它开始被用作解决NP-hard组合优化问题的新优化方法的基准。本文提出了一种使用2-Opt局部搜索的模因狩猎搜索算法来求解旅行商问题。狩猎搜索是一种进化算法,其灵感来自于对食肉动物群体狩猎的方法。为了证明模因算法的质量,在一组10个基准TSPLib实例上进行了测试,结果表明模因算法的性能优于先前的Hunting Search算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1