Data-Driven Facial Feature Morphing for 3D Face Synthesis

Yu Zhang
{"title":"Data-Driven Facial Feature Morphing for 3D Face Synthesis","authors":"Yu Zhang","doi":"10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2006/091-097","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven method for synthesizing new realistic 3D human faces by morphing a set of facial features. The method takes as examples 3D scanned human face models in order to exploit the shape variations presented in the real faces of individuals. We automatically compute a vertex-to-vertex correspondence between the unregistered face scans by deforming a generic mesh to fit the specific person’s face geometry in a global-tolocal fashion. Exploiting the statistics of the generated datasets of feature shapes we transform them into vector space representations by applying a principal component analysis (PCA). Our feature shape morphing model is formed as a linear combination of the main modes of feature shape variations. We introduce a shape smoothing and blending method for generating a seamlessly deformed mesh around the feature borders. We demonstrate our method by combining 3D morphing of four features to generate a wide range of different face shapes.","PeriodicalId":405486,"journal":{"name":"European Interdisciplinary Cybersecurity Conference","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Interdisciplinary Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2006/091-097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a data-driven method for synthesizing new realistic 3D human faces by morphing a set of facial features. The method takes as examples 3D scanned human face models in order to exploit the shape variations presented in the real faces of individuals. We automatically compute a vertex-to-vertex correspondence between the unregistered face scans by deforming a generic mesh to fit the specific person’s face geometry in a global-tolocal fashion. Exploiting the statistics of the generated datasets of feature shapes we transform them into vector space representations by applying a principal component analysis (PCA). Our feature shape morphing model is formed as a linear combination of the main modes of feature shape variations. We introduce a shape smoothing and blending method for generating a seamlessly deformed mesh around the feature borders. We demonstrate our method by combining 3D morphing of four features to generate a wide range of different face shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向三维人脸合成的数据驱动面部特征变形
本文提出了一种数据驱动的方法,通过对一组人脸特征进行变形,合成新的真实感三维人脸。该方法以三维扫描的人脸模型为例,利用个体真实面部呈现的形状变化。我们通过变形一个通用网格来适应特定的人的面部几何形状,以全局到局部的方式自动计算未注册人脸扫描之间的顶点到顶点对应关系。利用所生成的特征形状数据集的统计信息,通过应用主成分分析(PCA)将其转换为向量空间表示。我们的特征形状变形模型是特征形状变化的主要模式的线性组合。我们介绍了一种形状平滑和混合方法,用于在特征边界周围生成无缝变形网格。我们通过结合四个特征的三维变形来展示我们的方法,以生成各种不同的面部形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Enhanced Combinatorial Contextual Neural Bandit Approach for Client Selection in Federated Learning Emerging Technologies for Privacy Preservation in Energy Systems Understanding the Evolution of Transatlantic Data Privacy Regimes: Ideas, Interests, and Institutions A Federated Explainable AI Model for Breast Cancer Classification XAI-driven Adversarial Attacks on Network Intrusion Detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1