{"title":"Face Recognition with Multi-channel Local Mesh High-order Pattern Descriptor and Convolutional Neural Network","authors":"M. Asif, Yongsheng Gao, J. Zhou","doi":"10.1109/DICTA.2018.8615831","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Local Mesh High-order Pattern Descriptor (LMHPD) for face recognition. This description is constructed in a high-order derivative space and is integrated with a Convolutional Neural Network (CNN) architecture. Based on the information collected at a local neighborhood of reference pixel with diverse radiuses and mesh angles, a vectorized feature representation of the reference pixel is generated to provide micro-patterns. They are then converted to multi-channels to use in conjunction with the CNN. The CNN adopted in the proposed architecture is generic and very compact with a small number of convolutional layers. However, LMHPD is derived in such a way that it can work with most of the available CNN architectures. For keeping the computational cost and time complexity at the minimum, we propose a lighter approach of high-order texture descriptor with CNN architecture that can effectively extract discriminative face features. Extensive experiments on Extended Yale B and CMU-PIE datasets show that our method consistently outperforms several alternative descriptors for face recognition under various circumstances.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose a novel Local Mesh High-order Pattern Descriptor (LMHPD) for face recognition. This description is constructed in a high-order derivative space and is integrated with a Convolutional Neural Network (CNN) architecture. Based on the information collected at a local neighborhood of reference pixel with diverse radiuses and mesh angles, a vectorized feature representation of the reference pixel is generated to provide micro-patterns. They are then converted to multi-channels to use in conjunction with the CNN. The CNN adopted in the proposed architecture is generic and very compact with a small number of convolutional layers. However, LMHPD is derived in such a way that it can work with most of the available CNN architectures. For keeping the computational cost and time complexity at the minimum, we propose a lighter approach of high-order texture descriptor with CNN architecture that can effectively extract discriminative face features. Extensive experiments on Extended Yale B and CMU-PIE datasets show that our method consistently outperforms several alternative descriptors for face recognition under various circumstances.