Network Traffic Anomaly Detection based on Viterbi Algorithm Using SNMP MIB Data

Sulaiman Alhaidari, Ali I. Alharbi, Mansour Alshaikhsaleh, M. Zohdy, D. Debnath
{"title":"Network Traffic Anomaly Detection based on Viterbi Algorithm Using SNMP MIB Data","authors":"Sulaiman Alhaidari, Ali I. Alharbi, Mansour Alshaikhsaleh, M. Zohdy, D. Debnath","doi":"10.1145/3325917.3325928","DOIUrl":null,"url":null,"abstract":"With the growing number of attacks and malicious threats on the Internet services and network infrastructures, the need for techniques to identify and detect attacks is increasing. One of the most critical attack for cyber security and serious security threat to Internet services in recent years is Denial of Service (DoS). Therefore, using machine learning techniques along traditional security mechanisms such as firewall and cryptography, can improve the performance of intrusion detection systems (IDSs). This research paper introduces an approach using Hidden Markov Model (HMM) based on Viterbi algorithm for detecting anomalies on SNMP MIB dataset, and compares it to two classification algorithms: Adaboost M1 and Naive Bayes algorithm. The obtained results show HMM based on Viterbi algorithm found effective and achieved great results in detecting the attacks with a high detection rate.","PeriodicalId":249061,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Information System and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325917.3325928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

With the growing number of attacks and malicious threats on the Internet services and network infrastructures, the need for techniques to identify and detect attacks is increasing. One of the most critical attack for cyber security and serious security threat to Internet services in recent years is Denial of Service (DoS). Therefore, using machine learning techniques along traditional security mechanisms such as firewall and cryptography, can improve the performance of intrusion detection systems (IDSs). This research paper introduces an approach using Hidden Markov Model (HMM) based on Viterbi algorithm for detecting anomalies on SNMP MIB dataset, and compares it to two classification algorithms: Adaboost M1 and Naive Bayes algorithm. The obtained results show HMM based on Viterbi algorithm found effective and achieved great results in detecting the attacks with a high detection rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SNMP MIB数据的Viterbi算法网络流量异常检测
随着针对Internet服务和网络基础设施的攻击和恶意威胁数量的增加,对识别和检测攻击的技术的需求也在增加。拒绝服务攻击(DoS)是近年来最严重的网络安全攻击之一,也是互联网服务面临的严重安全威胁。因此,将机器学习技术与传统的安全机制(如防火墙和密码学)一起使用,可以提高入侵检测系统(ids)的性能。本文介绍了一种基于Viterbi算法的隐马尔可夫模型(HMM)用于SNMP MIB数据集异常检测的方法,并将其与Adaboost M1和朴素贝叶斯算法两种分类算法进行了比较。实验结果表明,基于Viterbi算法的HMM在检测攻击方面是有效的,取得了很好的效果,检测率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instant Adaptation Enrichment Technique to Improve Web Accessibility for Blind Users Analysis of competitive Power of Chinese Sports Apparel Brand based on Porter's five Force Model Knowledge Transfer, Sharing, and Management System Based on Causality for Requirements Change Management Vinfomize: A Framework for Multiple Voice-based Information Communication Using Robust Data Governance to Mitigate the Impact of Cybercrime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1