On detailed synchronous generator modeling for massively parallel dynamic state estimation

H. Karimipour, V. Dinavahi
{"title":"On detailed synchronous generator modeling for massively parallel dynamic state estimation","authors":"H. Karimipour, V. Dinavahi","doi":"10.1109/NAPS.2014.6965417","DOIUrl":null,"url":null,"abstract":"Synchronous generators are normally represented in a simplified fashion to reduce computational complexity in dynamic state estimation (DSE). In this paper a dynamic state estimator for a sixth-order synchronous generator model was developed on the massively parallel graphic processing units (GPU) to provide detailed and accurate Extended Kalman Filter (EKF) based estimation of the generator states. The estimation results are compared with the time domain simulation results on the CPU to demonstrate the accuracy of the proposed method. Also a speed-up of 10.02 for a 5120 generator system is reported.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Synchronous generators are normally represented in a simplified fashion to reduce computational complexity in dynamic state estimation (DSE). In this paper a dynamic state estimator for a sixth-order synchronous generator model was developed on the massively parallel graphic processing units (GPU) to provide detailed and accurate Extended Kalman Filter (EKF) based estimation of the generator states. The estimation results are compared with the time domain simulation results on the CPU to demonstrate the accuracy of the proposed method. Also a speed-up of 10.02 for a 5120 generator system is reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大规模并行动态状态估计的同步发电机详细建模
为了降低动态状态估计(DSE)中的计算复杂度,同步发电机通常以简化的方式表示。本文在大规模并行图形处理单元(GPU)上开发了一种六阶同步发电机模型的动态状态估计器,以提供详细而准确的基于扩展卡尔曼滤波(EKF)的发电机状态估计。将估计结果与CPU上的时域仿真结果进行了比较,验证了所提方法的准确性。据报道,5120发电机系统的加速也提高了10.02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Addressing cyber security for the oil, gas and energy sector Investigation of voltage stability in three-phase unbalanced distribution systems with DG using modal analysis technique Dynamic Remedial Action Scheme using online transient stability analysis Implementing a real-time cyber-physical system test bed in RTDS and OPNET Size reduction of permanent magnet generators for wind turbines with higher energy density permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1