J. Naranjo, C. González, R. Garcia, T. de Pedro, J. Revuelto, J. Reviejo
{"title":"Fuzzy logic based lateral control for GPS map tracking","authors":"J. Naranjo, C. González, R. Garcia, T. de Pedro, J. Revuelto, J. Reviejo","doi":"10.1109/IVS.2004.1336416","DOIUrl":null,"url":null,"abstract":"The automatic control of the speed and the steering of a vehicle are two of the main steps in order to develop autonomous intelligent vehicles. In this paper, a development of steering control for automated cars based on fuzzy logic and its related field tests are presented. Artificial intelligence techniques are used for controlling a broad range of systems, trying to emulate the human behaviour when classical control models are too much complex and require a lot of design time. Particularly, fuzzy logic control techniques are well proved success methods for managing systems where there appear to be limitations for classical control. Our control system has been installed in two Citroen Berlingo testbed vans whose steering wheel has been automated and can be controlled from a computer. The main sensorial input is a RTK DGPS that gives us positioning with one-centimeter precision. The results of the realized experiments show a human like system performance with adaption capability to any kind of track.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The automatic control of the speed and the steering of a vehicle are two of the main steps in order to develop autonomous intelligent vehicles. In this paper, a development of steering control for automated cars based on fuzzy logic and its related field tests are presented. Artificial intelligence techniques are used for controlling a broad range of systems, trying to emulate the human behaviour when classical control models are too much complex and require a lot of design time. Particularly, fuzzy logic control techniques are well proved success methods for managing systems where there appear to be limitations for classical control. Our control system has been installed in two Citroen Berlingo testbed vans whose steering wheel has been automated and can be controlled from a computer. The main sensorial input is a RTK DGPS that gives us positioning with one-centimeter precision. The results of the realized experiments show a human like system performance with adaption capability to any kind of track.