CHANNEL-MISMATCH DETECTION ALGORITHM FOR STEREOSCOPIC VIDEO USING CONVOLUTIONAL NEURAL NETWORK

S. Lavrushkin, D. Vatolin
{"title":"CHANNEL-MISMATCH DETECTION ALGORITHM FOR STEREOSCOPIC VIDEO USING CONVOLUTIONAL NEURAL NETWORK","authors":"S. Lavrushkin, D. Vatolin","doi":"10.1109/3DTV.2018.8478542","DOIUrl":null,"url":null,"abstract":"Channel mismatch (the result of swapping left and right views) is a 3D-video artifact that can cause major viewer discomfort. This work presents a novel high-accuracy method of channel-mismatch detection. In addition to the features described in our previous work, we introduce a new feature based on a convolutional neural network; it predicts channel-mismatch probability on the basis of the stereoscopic views and corresponding disparity maps. A logistic-regression model trained on the described features makes the final prediction. We tested this model on a set of 900 stereoscopic-video scenes, and it outperformed existing channel-mismatch detection methods that previously served in analyses of full-length stereoscopic movies.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Channel mismatch (the result of swapping left and right views) is a 3D-video artifact that can cause major viewer discomfort. This work presents a novel high-accuracy method of channel-mismatch detection. In addition to the features described in our previous work, we introduce a new feature based on a convolutional neural network; it predicts channel-mismatch probability on the basis of the stereoscopic views and corresponding disparity maps. A logistic-regression model trained on the described features makes the final prediction. We tested this model on a set of 900 stereoscopic-video scenes, and it outperformed existing channel-mismatch detection methods that previously served in analyses of full-length stereoscopic movies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的立体视频信道失配检测算法
通道不匹配(交换左视图和右视图的结果)是一个3d视频工件,可能会导致主要的观众不舒服。本文提出了一种新的高精度信道失配检测方法。除了我们之前工作中描述的特征之外,我们还引入了一个基于卷积神经网络的新特征;它根据立体视图和相应的视差图预测信道失配概率。对所描述的特征进行训练的逻辑回归模型进行最终预测。我们在一组900个立体视频场景上测试了这个模型,它优于现有的用于分析全长立体电影的频道不匹配检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEPTH ESTIMATION IN LIGHT FIELD CAMERA ARRAYS BASED ON MULTI-STEREO MATCHING AND BELIEF PROPAGATION LOCAL METHOD OF COLOR-DIFFERENCE CORRECTION BETWEEN STEREOSCOPIC-VIDEO VIEWS DEPTH IMAGE BASED VIEW SYNTHESIS WITH MULTIPLE REFERENCE VIEWS FOR VIRTUAL REALITY ICP WITH DEPTH COMPENSATION FOR CALIBRATION OF MULTIPLE TOF SENSORS 3DTV-CON 2018 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1