Image tag re-ranking by coupled probability transition

Jie Xiao, Wen-gang Zhou, Xia Li, Meng Wang, Q. Tian
{"title":"Image tag re-ranking by coupled probability transition","authors":"Jie Xiao, Wen-gang Zhou, Xia Li, Meng Wang, Q. Tian","doi":"10.1145/2393347.2396328","DOIUrl":null,"url":null,"abstract":"The large amount of user-tagged images on social networks is helpful to facilitate image management and image search. However, many tags are weakly relevant or irrelevant to the visual content, resulting in unsatisfactory performance in tag related applications. In this paper, we propose a coupled probability transition algorithm to estimate the text-visual group relevance from the observed data and then leverage it to predict tag relevance for a new query image. The visual group for a given tag is a cluster of images that are visually similar and share the same tag. The tag-visual group relevance is uncovered by exploiting the mutual reinforcement in visual space and semantic space alternatively. Experiments on NUS-WIDE dataset show the validity and superiority of the proposed approach over existing methods.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The large amount of user-tagged images on social networks is helpful to facilitate image management and image search. However, many tags are weakly relevant or irrelevant to the visual content, resulting in unsatisfactory performance in tag related applications. In this paper, we propose a coupled probability transition algorithm to estimate the text-visual group relevance from the observed data and then leverage it to predict tag relevance for a new query image. The visual group for a given tag is a cluster of images that are visually similar and share the same tag. The tag-visual group relevance is uncovered by exploiting the mutual reinforcement in visual space and semantic space alternatively. Experiments on NUS-WIDE dataset show the validity and superiority of the proposed approach over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于耦合概率转移的图像标签重排序
社交网络上大量的用户标记图像有助于方便图像管理和图像搜索。然而,许多标签与视觉内容的相关性很弱或不相关,导致与标签相关的应用程序的性能不理想。在本文中,我们提出了一种耦合概率转移算法,从观察到的数据中估计文本-视觉组相关性,然后利用它来预测新的查询图像的标签相关性。给定标签的视觉组是一组视觉上相似且共享相同标签的图像。标签-视觉组关联是通过交替利用视觉空间和语义空间的相互强化来揭示的。在NUS-WIDE数据集上的实验表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROI-based protection scheme for high definition interactive video applications TouchPaper: making print interactive A genetic algorithm for audio retargeting Mining in-class social networks for large-scale pedagogical analysis Plug&touch: a mobile interaction solution for large display via vision-based hand gesture detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1