Arnaud Carayol, M. Hague, A. Meyer, C. Ong, O. Serre
{"title":"Winning Regions of Higher-Order Pushdown Games","authors":"Arnaud Carayol, M. Hague, A. Meyer, C. Ong, O. Serre","doi":"10.1109/LICS.2008.41","DOIUrl":null,"url":null,"abstract":"In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested \"stack of stacks\" structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results.From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested "stack of stacks" structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results.From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.