Analysis of Modelling and Engineering Building Power Integration System Based on Renewable Energy

Frengky Panjaitan, S. Abduh
{"title":"Analysis of Modelling and Engineering Building Power Integration System Based on Renewable Energy","authors":"Frengky Panjaitan, S. Abduh","doi":"10.1109/ICIEE49813.2020.9277244","DOIUrl":null,"url":null,"abstract":"The intensity of energy consumption for commercial buildings in Jakarta is quite high. It is around 240 kWH/m2/year by USAID-ASEAN, IFC and JICA. In Tokyo, the intensity of energy consumption is around 140 kWH/m2/year. The Ministry of Energy and Mineral Resources releases about the usage of energy in Indonesia, it is said that the usage coal is 62.7%, gas 21.2%, oil 4.0% and renewable energy 11.4%. The government has made an electricity supply business plan for 2019-2028, it is stated that renewable energy 23%, oil 0.4%, gas 22.2% and coal 54.4%. The data from Emporis.GmBH state that the total number of buildings in Jakarta is 962 high-rise buildings and 244 skyscraper buildings. This research aim is to overcome the energy needs and reduce the cost of energy in a building, by utilizing the potential of renewable energy produced by the building. This research uses the literature study or library research method. This study found a source of renewable energy electricity, namely GTP with a capacity of 18.52 kW and generating an RPV of 126.9 kW with a total PEBT of 145.42 kW. An efficiency generating of 4.72% between PEFK and PEBT, 17.50% between PLAMP/STK with PEBT and 25.63% between PPUMP and PGTP. Based on the building power efficiency integration system, it shows that the renewable energy.","PeriodicalId":127106,"journal":{"name":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEE49813.2020.9277244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The intensity of energy consumption for commercial buildings in Jakarta is quite high. It is around 240 kWH/m2/year by USAID-ASEAN, IFC and JICA. In Tokyo, the intensity of energy consumption is around 140 kWH/m2/year. The Ministry of Energy and Mineral Resources releases about the usage of energy in Indonesia, it is said that the usage coal is 62.7%, gas 21.2%, oil 4.0% and renewable energy 11.4%. The government has made an electricity supply business plan for 2019-2028, it is stated that renewable energy 23%, oil 0.4%, gas 22.2% and coal 54.4%. The data from Emporis.GmBH state that the total number of buildings in Jakarta is 962 high-rise buildings and 244 skyscraper buildings. This research aim is to overcome the energy needs and reduce the cost of energy in a building, by utilizing the potential of renewable energy produced by the building. This research uses the literature study or library research method. This study found a source of renewable energy electricity, namely GTP with a capacity of 18.52 kW and generating an RPV of 126.9 kW with a total PEBT of 145.42 kW. An efficiency generating of 4.72% between PEFK and PEBT, 17.50% between PLAMP/STK with PEBT and 25.63% between PPUMP and PGTP. Based on the building power efficiency integration system, it shows that the renewable energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可再生能源的建筑电力集成系统建模与工程分析
雅加达商业建筑的能源消耗强度相当高。美国国际开发署-东盟、国际金融公司和日本国际协力事事团的标准为240千瓦时/平方米/年左右。在东京,能源消耗强度约为140千瓦时/平方米/年。能源和矿产资源部发布了关于印尼能源使用情况的报告,称煤炭使用量为62.7%,天然气21.2%,石油4.0%,可再生能源11.4%。政府制定了2019-2028年的电力供应业务计划,其中可再生能源占23%,石油占0.4%,天然气占22.2%,煤炭占54.4%。数据来自Emporis。该公司表示,雅加达的建筑总数为962座高层建筑和244座摩天大楼。这项研究的目的是通过利用建筑物产生的可再生能源的潜力来克服能源需求并降低建筑物的能源成本。本研究采用文献研究法或图书馆研究法。本研究发现了一个可再生能源电力来源,即GTP,其容量为18.52 kW, RPV为126.9 kW,总PEBT为145.42 kW。PEFK和PEBT的效率产生率为4.72%,PLAMP/STK与PEBT的效率产生率为17.50%,PPUMP和PGTP的效率产生率为25.63%。基于建筑能效集成系统,说明了可再生能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nutrient Film Technique for Automatic Hydroponic System Based on Arduino Performance Evaluation of Body Temperature Data Transmission Using Turbo Codes in 4G-LTE Design of Prototype Measuring Motor Vehicles Velocity Using Hall Effect Sensor Series A-1302 based On Arduino Mega2560 Design of a Microstrip Antenna Array Dual Band Using Stub Method Feasibility Study for Development of Micro Grid System in Rural Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1