A Data-Driven Minimal Approach for CAN Bus Reverse Engineering

Alessio Buscemi, G. Castignani, T. Engel, Ion Turcanu
{"title":"A Data-Driven Minimal Approach for CAN Bus Reverse Engineering","authors":"Alessio Buscemi, G. Castignani, T. Engel, Ion Turcanu","doi":"10.1109/CAVS51000.2020.9334650","DOIUrl":null,"url":null,"abstract":"Current in-vehicle communication systems lack security features, such as encryption and secure authentication. The approach most commonly used by car manufacturers is to achieve security through obscurity – keep the proprietary format used to encode the information secret. However, it is still possible to decode this information via reverse engineering. Existing reverse engineering methods typically require physical access to the vehicle and are time consuming. In this paper, we present a Machine Learning-based method that performs automated Controller Area Network (CAN) bus reverse engineering while requiring minimal time, hardware equipment, and potentially no physical access to the vehicle. Our results demonstrate high accuracy in identifying critical vehicle functions just from analysing raw traces of CAN data.","PeriodicalId":409507,"journal":{"name":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAVS51000.2020.9334650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Current in-vehicle communication systems lack security features, such as encryption and secure authentication. The approach most commonly used by car manufacturers is to achieve security through obscurity – keep the proprietary format used to encode the information secret. However, it is still possible to decode this information via reverse engineering. Existing reverse engineering methods typically require physical access to the vehicle and are time consuming. In this paper, we present a Machine Learning-based method that performs automated Controller Area Network (CAN) bus reverse engineering while requiring minimal time, hardware equipment, and potentially no physical access to the vehicle. Our results demonstrate high accuracy in identifying critical vehicle functions just from analysing raw traces of CAN data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的CAN总线逆向工程最小化方法
目前的车载通信系统缺乏安全功能,如加密和安全认证。汽车制造商最常用的方法是通过模糊来实现安全性——将用于编码信息的专有格式保密。然而,仍然有可能通过逆向工程解码这些信息。现有的逆向工程方法通常需要实际进入车辆,而且耗时。在本文中,我们提出了一种基于机器学习的方法,该方法可以执行自动控制器局域网(CAN)总线逆向工程,同时需要最少的时间,硬件设备,并且可能不需要对车辆进行物理访问。我们的研究结果表明,仅通过分析CAN数据的原始痕迹就可以准确识别关键车辆功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prototyping EcoCAR Connected Vehicle Testing System Using DigiCAV Development Platform Title Page Extended H∞ Filter Adaptation Based on Innovation Sequence for Advanced Ego-Vehicle Motion Estimation Hybrid Model Based Pre-Crash Severity Estimation for Automated Driving A Methodology to Determine Test Scenarios for Sensor Constellation Evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1