Deep-Learned Air-Coupled Ultrasonic Sonar Image Enhancement and Object Localization

Stefan Schulte, Gianni Allevato, Christoph Haugwitz, M. Kupnik
{"title":"Deep-Learned Air-Coupled Ultrasonic Sonar Image Enhancement and Object Localization","authors":"Stefan Schulte, Gianni Allevato, Christoph Haugwitz, M. Kupnik","doi":"10.1109/SENSORS52175.2022.9967244","DOIUrl":null,"url":null,"abstract":"Air-coupled ultrasonic phased arrays are a complement to existing lidar-, camera- and radar-based sensors for object detection and spatial imaging. These in-air sonar systems typically use conventional beamforming (CBF) for high-frame rate image formation. Consequently, in real-world multi-target environments, the unique identification of reflectors is a challenging task due to the array-specific point spread function (PSF). Therefore, we present a neural auto-encoder network based on Xception for removing the PSF characteristics from CBF images and estimating the number of reflectors. Based on this information, the reflector coordinates are extracted by Gaussian mixture model clustering. We train and test the architecture on simulated and randomized multi-target CBF images. The performance is evaluated in terms of the localization precision, reflector count error and the angular resolution obtained. The preliminary results show a low mean error for the localization (-0.61°, -3 mm) and an accuracy of 83% for the reflector count estimation. The angular resolution of the given array can be improved from 14° to 2°. Overall, we highlight the potential of state-of-the-art auto-encoder networks, typically used for optical images, for CBF image enhancement and the combination with clustering for target localization.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air-coupled ultrasonic phased arrays are a complement to existing lidar-, camera- and radar-based sensors for object detection and spatial imaging. These in-air sonar systems typically use conventional beamforming (CBF) for high-frame rate image formation. Consequently, in real-world multi-target environments, the unique identification of reflectors is a challenging task due to the array-specific point spread function (PSF). Therefore, we present a neural auto-encoder network based on Xception for removing the PSF characteristics from CBF images and estimating the number of reflectors. Based on this information, the reflector coordinates are extracted by Gaussian mixture model clustering. We train and test the architecture on simulated and randomized multi-target CBF images. The performance is evaluated in terms of the localization precision, reflector count error and the angular resolution obtained. The preliminary results show a low mean error for the localization (-0.61°, -3 mm) and an accuracy of 83% for the reflector count estimation. The angular resolution of the given array can be improved from 14° to 2°. Overall, we highlight the potential of state-of-the-art auto-encoder networks, typically used for optical images, for CBF image enhancement and the combination with clustering for target localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习空气耦合超声声纳图像增强与目标定位
空气耦合超声相控阵是对现有的基于激光雷达、相机和雷达的物体检测和空间成像传感器的补充。这些空中声纳系统通常使用传统的波束形成(CBF)来进行高帧率图像形成。因此,在现实世界的多目标环境中,由于阵列特定的点扩散函数(PSF),反射器的唯一识别是一项具有挑战性的任务。因此,我们提出了一种基于exception的神经自编码器网络,用于从CBF图像中去除PSF特征并估计反射器的数量。在此基础上,利用高斯混合模型聚类提取反射面坐标。我们在模拟和随机的多目标CBF图像上训练和测试了该架构。从定位精度、反射面计数误差和角度分辨率三个方面对该方法进行了评价。初步结果表明,定位的平均误差较低(-0.61°,-3 mm),估计反射镜计数的精度为83%。该阵列的角分辨率可从14°提高到2°。总的来说,我们强调了最先进的自动编码器网络的潜力,通常用于光学图像,CBF图像增强以及与目标定位的聚类相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-intrusive Water Flow Rate Measurement: A TEG-powered Ultrasonic Sensing Approach Design of optical inclinometer composed of a ball lens and viscosity fluid to improve focusing Fall Event Detection using Vision Transformer Porous Silicon-Based Microspectral Unit for Real-Time Moisture Detection in a Battery-less Smart Mask Twisted and Coiled Carbon Nanotube Yarn Muscle Embedding Ferritin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1