Adsorption of Rhodamine-B (RhB) and Regeneration of MCM-41 Mesoporous Silica

Thiago Rodrigo Barbosa Barros, Thianne Silva Batista Barbosa, Tellys Lins Almeida Barbosa, Meiry Gláucia Freire Rodrigues
{"title":"Adsorption of Rhodamine-B (RhB) and Regeneration of MCM-41 Mesoporous Silica","authors":"Thiago Rodrigo Barbosa Barros, Thianne Silva Batista Barbosa, Tellys Lins Almeida Barbosa, Meiry Gláucia Freire Rodrigues","doi":"10.21926/cr.2301010","DOIUrl":null,"url":null,"abstract":"Rhodamine (RhB) adsorption was carried out on MCM-41 and MCM-41 calcined. The effect of parameters such as pH was investigated. The reusability potential of MCM-41 was also established and the mechanism of RhB adsorption was discussed. MCM-41 was synthesized and calcined, with all samples characterized by X-Ray Diffractometry, X-ray Fluorescence by Dispersive Energy, Infrared Spectroscopy, Scanning Electron Microscopy, and Thermogravimetric analysis. The results of the characterization techniques performed confirmed the formation of the MCM-41 structure. During the adsorption of the RhB dye, high removal percentages and rapid kinetics occur in an acid medium. The adsorption kinetics was evaluated by two models: pseudo-first order and pseudo-second order. The pseudo-first-order kinetic model represented the interaction mechanism well during RhB adsorption by MCM-41. However, the pseudo-second-order model better represented the interaction mechanism during RhB adsorption by MCM-41 calcined. The regeneration study found that the MCM-41 and MCM-41 calcined were maintained at 80 and 90% of their original condition after three successive regeneration cycles. The overall results show that the process could be used as a strategy for environmentally sustainable wastewater treatment.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2301010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rhodamine (RhB) adsorption was carried out on MCM-41 and MCM-41 calcined. The effect of parameters such as pH was investigated. The reusability potential of MCM-41 was also established and the mechanism of RhB adsorption was discussed. MCM-41 was synthesized and calcined, with all samples characterized by X-Ray Diffractometry, X-ray Fluorescence by Dispersive Energy, Infrared Spectroscopy, Scanning Electron Microscopy, and Thermogravimetric analysis. The results of the characterization techniques performed confirmed the formation of the MCM-41 structure. During the adsorption of the RhB dye, high removal percentages and rapid kinetics occur in an acid medium. The adsorption kinetics was evaluated by two models: pseudo-first order and pseudo-second order. The pseudo-first-order kinetic model represented the interaction mechanism well during RhB adsorption by MCM-41. However, the pseudo-second-order model better represented the interaction mechanism during RhB adsorption by MCM-41 calcined. The regeneration study found that the MCM-41 and MCM-41 calcined were maintained at 80 and 90% of their original condition after three successive regeneration cycles. The overall results show that the process could be used as a strategy for environmentally sustainable wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
罗丹明- b (RhB)的吸附及MCM-41介孔二氧化硅的再生
在MCM-41和MCM-41煅烧后进行罗丹明(RhB)吸附。考察了pH等参数对反应的影响。确定了MCM-41的重复利用潜力,并对其吸附RhB的机理进行了探讨。合成并煅烧了MCM-41,并对所有样品进行了x射线衍射、x射线色散能荧光、红外光谱、扫描电镜和热重分析。表征技术的结果证实了MCM-41结构的形成。在酸性介质中吸附RhB染料,去除率高,动力学快。采用拟一级和拟二级吸附动力学模型对吸附动力学进行了评价。拟一级动力学模型较好地反映了MCM-41吸附RhB的相互作用机理。而拟二阶模型更能反映MCM-41煅烧吸附RhB的相互作用机理。再生研究发现,经过连续3次再生循环后,MCM-41和MCM-41分别保持在原始状态的80%和90%。总体结果表明,该工艺可以作为一种环境可持续的废水处理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1