Nearest-Neighbor Forecasts of U.S. Interest Rates

John T. Barkoulas, Christopher F. Baum, A. Chakraborty
{"title":"Nearest-Neighbor Forecasts of U.S. Interest Rates","authors":"John T. Barkoulas, Christopher F. Baum, A. Chakraborty","doi":"10.32890/IJBF2003.1.1.8331","DOIUrl":null,"url":null,"abstract":"We employ a nonlinear, nonparametric method to model the stochastic behavior of changes in several short and long term U.S. interest rates. We apply a nonlinear autoregression to the series using the locally weighted regression (LWR) estimation method, a nearest-neighbor method, and evaluate the forecasting performance with a measure of root mean square error (RMSE). We compare the forecast performance of the nonparametric fit to the performance of two benchmark linear models: an autoregressive model and a random-walk-with-drift model. The nonparametric model exhibits greater out-of-sample forecast accuracy than that of the linear predictors for most U.S. interest rate series. The improvements in forecast accuracy are statistically significant and robust. This evidence establishes the presence of significant nonlinear mean predictability in U.S. interest rates, as well as the usefulness of the LWR method as a modeling strategy for these benchmark series.","PeriodicalId":170943,"journal":{"name":"The International Journal of Banking and Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Banking and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/IJBF2003.1.1.8331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We employ a nonlinear, nonparametric method to model the stochastic behavior of changes in several short and long term U.S. interest rates. We apply a nonlinear autoregression to the series using the locally weighted regression (LWR) estimation method, a nearest-neighbor method, and evaluate the forecasting performance with a measure of root mean square error (RMSE). We compare the forecast performance of the nonparametric fit to the performance of two benchmark linear models: an autoregressive model and a random-walk-with-drift model. The nonparametric model exhibits greater out-of-sample forecast accuracy than that of the linear predictors for most U.S. interest rate series. The improvements in forecast accuracy are statistically significant and robust. This evidence establishes the presence of significant nonlinear mean predictability in U.S. interest rates, as well as the usefulness of the LWR method as a modeling strategy for these benchmark series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国利率的最近邻预测
我们采用一种非线性、非参数的方法来模拟几种短期和长期美国利率变化的随机行为。我们使用局部加权回归(LWR)估计方法和最近邻方法对序列进行非线性自回归,并使用均方根误差(RMSE)度量来评估预测性能。我们将非参数拟合的预测性能与两个基准线性模型的性能进行了比较:一个自回归模型和一个随漂移随机行走模型。对于大多数美国利率序列,非参数模型显示出比线性预测器更高的样本外预测精度。预测精度的提高在统计上是显著的和稳健的。这一证据证明了美国利率存在显著的非线性平均可预测性,以及LWR方法作为这些基准系列的建模策略的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LEVERAGE AND IPO PRICING: EVIDENCE FROM MALAYSIA COMPARISON OF THE PASS-THROUGH SPEED MODELS OF DIFFERENT MARKETS: AN EMPIRICAL STUDY OF THE MARKETS OF MAINLAND CHINA AND TAIWAN THE IMPACT OF MANAGERIAL CHARACTERISTICS ON CAPITAL STRUCTURE IN MALAYSIAN MANUFACTURING SMES Predicting Implied Volatility in the Commodity Futures Options Markets Separate Legal Entity Under Syariah Law and its Application on Islamic Banking in Malaysia: A Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1