Unsupervised Dialogue Act Classification with Optimum-Path Forest

L. C. Ribeiro, J. Papa
{"title":"Unsupervised Dialogue Act Classification with Optimum-Path Forest","authors":"L. C. Ribeiro, J. Papa","doi":"10.1109/SIBGRAPI.2018.00010","DOIUrl":null,"url":null,"abstract":"Dialogue Act classification is a relevant problem for the Natural Language Processing field either as a standalone task or when used as input for downstream applications. Despite its importance, most of the existing approaches rely on supervised techniques, which depend on annotated samples, making it difficult to take advantage of the increasing amount of data available in different domains. In this paper, we briefly review the most commonly used datasets to evaluate Dialogue Act classification approaches and introduce the Optimum-Path Forest (OPF) classifier to this task. Instead of using its original strategy to determine the corresponding class for each cluster, we use a modified version based on majority voting, named M-OPF, which yields good results when compared to k-means and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), according to accuracy and V-measure. We also show that M-OPF, and consequently OPF, are less sensitive to hyper-parameter tuning when compared to HDBSCAN.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Dialogue Act classification is a relevant problem for the Natural Language Processing field either as a standalone task or when used as input for downstream applications. Despite its importance, most of the existing approaches rely on supervised techniques, which depend on annotated samples, making it difficult to take advantage of the increasing amount of data available in different domains. In this paper, we briefly review the most commonly used datasets to evaluate Dialogue Act classification approaches and introduce the Optimum-Path Forest (OPF) classifier to this task. Instead of using its original strategy to determine the corresponding class for each cluster, we use a modified version based on majority voting, named M-OPF, which yields good results when compared to k-means and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), according to accuracy and V-measure. We also show that M-OPF, and consequently OPF, are less sensitive to hyper-parameter tuning when compared to HDBSCAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优路径森林的无监督对话行为分类
对话行为分类是自然语言处理领域的一个相关问题,无论是作为一个独立的任务,还是作为下游应用程序的输入。尽管它很重要,但大多数现有的方法都依赖于监督技术,这依赖于带注释的样本,这使得很难利用不同领域中不断增加的可用数据量。在本文中,我们简要回顾了最常用的数据集来评估对话行为分类方法,并介绍了最优路径森林(OPF)分类器。我们没有使用原始策略来确定每个集群的相应类别,而是使用了基于多数投票的修改版本,称为M-OPF,与k-means和基于分层密度的带噪声应用空间聚类(HDBSCAN)相比,根据精度和V-measure,它产生了良好的结果。我们还表明,与HDBSCAN相比,M-OPF和因此的OPF对超参数调优不太敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Spectral Filtering for Network Simplification A Photon Tracing Approach to Solve Inverse Rendering Problems Asynchronous Stroboscopic Structured Lighting Image Processing Using Low-Cost Cameras Scene Conversion for Physically-Based Renderers Multicenter Imaging Studies: Automated Approach to Evaluating Data Variability and the Role of Outliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1