Refining Indeterministic Choice: Imprecise Probabilities and Strategic Thinking

J. Castro, J. Gabarró, M. Serna
{"title":"Refining Indeterministic Choice: Imprecise Probabilities and Strategic Thinking","authors":"J. Castro, J. Gabarró, M. Serna","doi":"10.1142/s2196888820500256","DOIUrl":null,"url":null,"abstract":"Often, uncertainty is present in processes that are part of our routines. Having tools to understand the consequences of unpredictability is convenient. We introduce a general framework to deal with uncertainty in the realm of distribution sets that are descriptions of imprecise probabilities. We propose several non-biased re ̄nement strategies to obtain sensible forecasts about results of uncertain processes. Initially, uncertainty on a system is modeled as the nondeterministic choice of its possible behaviors. Our re ̄nement hypothesis translates non-determinism into imprecise probabilistic choices. Imprecise probabilities allow us to propose a notion of uncertainty re ̄nement in terms of set inclusions. Later on, unpredictability is tackled through a strategic approach using uncertainty pro ̄les and angel/daemon games (a=d-games). Here, imprecise probabilities form the set of mixed strategies and Nash equilibria corresponds to natural uncertainty re ̄nements. We use this approach to study the performance of Web applications in terms of response times under stress conditions.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Often, uncertainty is present in processes that are part of our routines. Having tools to understand the consequences of unpredictability is convenient. We introduce a general framework to deal with uncertainty in the realm of distribution sets that are descriptions of imprecise probabilities. We propose several non-biased re ̄nement strategies to obtain sensible forecasts about results of uncertain processes. Initially, uncertainty on a system is modeled as the nondeterministic choice of its possible behaviors. Our re ̄nement hypothesis translates non-determinism into imprecise probabilistic choices. Imprecise probabilities allow us to propose a notion of uncertainty re ̄nement in terms of set inclusions. Later on, unpredictability is tackled through a strategic approach using uncertainty pro ̄les and angel/daemon games (a=d-games). Here, imprecise probabilities form the set of mixed strategies and Nash equilibria corresponds to natural uncertainty re ̄nements. We use this approach to study the performance of Web applications in terms of response times under stress conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精炼不确定选择:不精确概率和战略思考
通常,不确定性存在于我们日常生活的一部分。有工具来理解不可预测性的后果是很方便的。我们引入了一个通用框架来处理分布集领域的不确定性,分布集是对不精确概率的描述。我们提出了几种无偏重构策略,以获得对不确定过程结果的合理预测。最初,系统的不确定性被建模为其可能行为的不确定性选择。我们的重构假设将非决定论转化为不精确的概率选择。不精确的概率允许我们根据集合包含提出不确定性重构的概念。之后,不可预测性是通过使用不确定性和天使/守护游戏(a=d-games)的策略方法来解决的。在这里,不精确的概率构成了混合策略的集合,纳什均衡对应于自然的不确定性。我们使用这种方法来研究Web应用程序在压力条件下的响应时间性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1