Evaluation of motion detection techniques for video surveillance

M. Fettke, K. Sammut, M. Naylor, F. He
{"title":"Evaluation of motion detection techniques for video surveillance","authors":"M. Fettke, K. Sammut, M. Naylor, F. He","doi":"10.1109/IDC.2002.995405","DOIUrl":null,"url":null,"abstract":"Video motion detection is fundamental in many autonomous video surveillance strategies. However, in outdoor scenes where inconsistent lighting and unimportant, but distracting, background movement is present, it is a challenging problem. Recent research has produced several background modelling techniques, based on image differencing, that exhibit real-time performance and high accuracy for certain classes of scene. The aim of this paper is to assess the performance of some of these background modelling techniques, namely the Gaussian mixture model and the hybrid detection algorithm, using video sequences of outdoor scenes where the weather introduces unpredictable variations in both lighting and background movement. The results are analysed and reported, with the aim of identifying suitable directions for enhancing the robustness of motion detection techniques for outdoor video surveillance systems.","PeriodicalId":385351,"journal":{"name":"Final Program and Abstracts on Information, Decision and Control","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Final Program and Abstracts on Information, Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDC.2002.995405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Video motion detection is fundamental in many autonomous video surveillance strategies. However, in outdoor scenes where inconsistent lighting and unimportant, but distracting, background movement is present, it is a challenging problem. Recent research has produced several background modelling techniques, based on image differencing, that exhibit real-time performance and high accuracy for certain classes of scene. The aim of this paper is to assess the performance of some of these background modelling techniques, namely the Gaussian mixture model and the hybrid detection algorithm, using video sequences of outdoor scenes where the weather introduces unpredictable variations in both lighting and background movement. The results are analysed and reported, with the aim of identifying suitable directions for enhancing the robustness of motion detection techniques for outdoor video surveillance systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频监控中运动检测技术的评价
视频运动检测是许多自主视频监控策略的基础。然而,在室外场景中,不一致的灯光和不重要的,但分散注意力的背景运动,是一个具有挑战性的问题。最近的研究产生了几种基于图像差分的背景建模技术,这些技术对某些类别的场景表现出实时性和高精度。本文的目的是评估其中一些背景建模技术的性能,即高斯混合模型和混合检测算法,使用户外场景的视频序列,其中天气在照明和背景运动中引入了不可预测的变化。对结果进行了分析和报告,旨在确定适当的方向,以增强户外视频监控系统的运动检测技术的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision missile guidance with angle only measurements Data deterioration: using laboratory measurements for dynamic calibration The geometric significance of spectral nulls Minimally redundant maximally robust linear precoders Full autonomy of intelligent flight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1