Mirgita Frasheri, Baran Çürüklü, Mikael Esktröm, A. Papadopoulos
{"title":"Adaptive Autonomy in a Search and Rescue Scenario","authors":"Mirgita Frasheri, Baran Çürüklü, Mikael Esktröm, A. Papadopoulos","doi":"10.1109/SASO.2018.00026","DOIUrl":null,"url":null,"abstract":"Adaptive autonomy plays a major role in the design of multi-robots and multi-agent systems, where the need of collaboration for achieving a common goal is of primary importance. In particular, adaptation becomes necessary to deal with dynamic environments, and scarce available resources. In this paper, a mathematical framework for modelling the agents' willingness to interact and collaborate, and a dynamic adaptation strategy for controlling the agents' behavior, which accounts for factors such as progress toward a goal and available resources for completing a task among others, are proposed. The performance of the proposed strategy is evaluated through a fire rescue scenario, where a team of simulated mobile robots need to extinguish all the detected fires and save the individuals at risk, while having limited resources. The simulations are implemented as a ROS-based multi agent system, and results show that the proposed adaptation strategy provides a more stable performance than a static collaboration policy.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Adaptive autonomy plays a major role in the design of multi-robots and multi-agent systems, where the need of collaboration for achieving a common goal is of primary importance. In particular, adaptation becomes necessary to deal with dynamic environments, and scarce available resources. In this paper, a mathematical framework for modelling the agents' willingness to interact and collaborate, and a dynamic adaptation strategy for controlling the agents' behavior, which accounts for factors such as progress toward a goal and available resources for completing a task among others, are proposed. The performance of the proposed strategy is evaluated through a fire rescue scenario, where a team of simulated mobile robots need to extinguish all the detected fires and save the individuals at risk, while having limited resources. The simulations are implemented as a ROS-based multi agent system, and results show that the proposed adaptation strategy provides a more stable performance than a static collaboration policy.