A Cross-Platform Study on IoT Malware

Tao Ban, Ryoichi Isawa, K. Yoshioka, D. Inoue
{"title":"A Cross-Platform Study on IoT Malware","authors":"Tao Ban, Ryoichi Isawa, K. Yoshioka, D. Inoue","doi":"10.23919/ICMU.2018.8653580","DOIUrl":null,"url":null,"abstract":"Attacks towards the Internet of Things (IoT) devices are on the rise. For the lack of basic security monitoring and protection mechanisms, many of these devices are infected with malware and forced to join the attack campaigns on the Internet. Efficient precaution and mitigation of emerging IoT malware could only be pursued after in-depth analysis of captured malware samples. To enable efficient countermeasure against IoT malware, in this paper, we present a multi-level analysis of IoT malware programs based on static/dynamic analysis. To do so, we first use an entropy-based method to differentiate packed malware samples from non-packed ones. Then, characterizing information from static and dynamic analysis are vectorized and examined by t-SNE, which provides a visual hint on the interpretability of different features. Finally, an efficient classifier, namely support vector machine (SVM), is applied to the vector presentations of the malware for quantitative evaluation. Experiment show that opcode sequences obtained from static analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy.","PeriodicalId":398108,"journal":{"name":"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU.2018.8653580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Attacks towards the Internet of Things (IoT) devices are on the rise. For the lack of basic security monitoring and protection mechanisms, many of these devices are infected with malware and forced to join the attack campaigns on the Internet. Efficient precaution and mitigation of emerging IoT malware could only be pursued after in-depth analysis of captured malware samples. To enable efficient countermeasure against IoT malware, in this paper, we present a multi-level analysis of IoT malware programs based on static/dynamic analysis. To do so, we first use an entropy-based method to differentiate packed malware samples from non-packed ones. Then, characterizing information from static and dynamic analysis are vectorized and examined by t-SNE, which provides a visual hint on the interpretability of different features. Finally, an efficient classifier, namely support vector machine (SVM), is applied to the vector presentations of the malware for quantitative evaluation. Experiment show that opcode sequences obtained from static analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网恶意软件跨平台研究
针对物联网(IoT)设备的攻击正在上升。由于缺乏基本的安全监控和保护机制,许多这些设备被恶意软件感染,被迫加入互联网上的攻击活动。只有对捕获的恶意软件样本进行深入分析后,才能有效预防和缓解新兴的物联网恶意软件。为了有效地对抗物联网恶意软件,本文提出了基于静态/动态分析的物联网恶意软件程序的多层次分析。为此,我们首先使用基于熵的方法来区分打包的恶意软件样本和非打包的恶意软件样本。然后,通过t-SNE对静态和动态分析的特征信息进行矢量化和检验,为不同特征的可解释性提供视觉提示。最后,将一种高效的分类器即支持向量机(SVM)应用于恶意软件的向量表示进行定量评估。实验表明,从静态分析中获得的操作码序列提供了足够的判别信息,使得物联网恶意软件可以以接近最佳的精度进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and Analysing Overlay Networks by Ambients with Wormholes VR Classroom: Enhancing Learning Experience with Virtual Class Rooms [Copyright notice] ICMU 2018 Committees Deep Reinforcement Learning-Based Method of Mobile Data Offloading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1