Ontology-Based Post-Hoc Explanations via Simultaneous Concept Extraction*

A. Ponomarev, Anton Agafonov
{"title":"Ontology-Based Post-Hoc Explanations via Simultaneous Concept Extraction*","authors":"A. Ponomarev, Anton Agafonov","doi":"10.1109/ICMLA55696.2022.00147","DOIUrl":null,"url":null,"abstract":"Ontology-based explanation techniques allow one to get explanation why a neural network arrived to some conclusion using human-understandable terms and their formal definitions. The paper proposes a method to build post-hoc ontology-based explanations by training a multi-label neural network mapping the activations of the specified \"black box\" network to ontology concepts. In order to simplify training of such network we employ semantic loss, taking into account relationships between concepts. The experiment with a synthetic dataset shows that the proposed method can generate accurate ontology-based explanations of a given network.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ontology-based explanation techniques allow one to get explanation why a neural network arrived to some conclusion using human-understandable terms and their formal definitions. The paper proposes a method to build post-hoc ontology-based explanations by training a multi-label neural network mapping the activations of the specified "black box" network to ontology concepts. In order to simplify training of such network we employ semantic loss, taking into account relationships between concepts. The experiment with a synthetic dataset shows that the proposed method can generate accurate ontology-based explanations of a given network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时概念抽取的基于本体的事后解释*
基于本体的解释技术允许人们使用人类可理解的术语及其正式定义来解释为什么神经网络得出某些结论。本文提出了一种通过训练多标签神经网络将指定的“黑箱”网络的激活映射到本体概念来构建基于本体的事后解释的方法。为了简化这种网络的训练,我们考虑了概念之间的关系,使用了语义损失。在一个合成数据集上的实验表明,该方法可以对给定的网络生成准确的基于本体的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives
IF 9.9 2区 材料科学Nano ResearchPub Date : 2021-03-24 DOI: 10.1007/s12274-021-3334-y
Samrat Sarkar, Swagata Roy, Yufeng Zhao, Jiujun Zhang
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximate Orthogonal Spectral Autoencoders for Community Analysis in Social Networks DeepReject and DeepRoad: Road Condition Recognition and Classification Under Adversarial Conditions Improving Aquaculture Systems using AI: Employing predictive models for Biomass Estimation on Sonar Images ICDARTS: Improving the Stability of Cyclic DARTS Symbolic Semantic Memory in Transformer Language Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1