Face sketch recognition using local invariant features

A. Tharwat, Hani M. K. Mahdi, A. El-Hennawy, A. Hassanien
{"title":"Face sketch recognition using local invariant features","authors":"A. Tharwat, Hani M. K. Mahdi, A. El-Hennawy, A. Hassanien","doi":"10.1109/SOCPAR.2015.7492793","DOIUrl":null,"url":null,"abstract":"Face sketch recognition is one of the recent biometrics, which is used to identify criminals. In this paper, a proposed model is used to identify face sketch images based on local invariant features. In this model, two local invariant feature extraction methods, namely, Scale Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP) are used to extract local features from photos and sketches. Minimum distance and Support Vector Machine (SVM) classifiers are used to match the features of an unknown sketch with photos. Due to high dimensional features, Direct Linear Discriminant Analysis (Direct-LDA) is used. CHUK face sketch database images is used in our experiments. The experimental results show that SIFT method is robust and it extracts discriminative features than LBP. Moreover, different parameters of SIFT and LBP are discussed and tuned to extract robust and discriminative features.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Face sketch recognition is one of the recent biometrics, which is used to identify criminals. In this paper, a proposed model is used to identify face sketch images based on local invariant features. In this model, two local invariant feature extraction methods, namely, Scale Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP) are used to extract local features from photos and sketches. Minimum distance and Support Vector Machine (SVM) classifiers are used to match the features of an unknown sketch with photos. Due to high dimensional features, Direct Linear Discriminant Analysis (Direct-LDA) is used. CHUK face sketch database images is used in our experiments. The experimental results show that SIFT method is robust and it extracts discriminative features than LBP. Moreover, different parameters of SIFT and LBP are discussed and tuned to extract robust and discriminative features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部不变特征的人脸素描识别
人脸素描识别是近年来发展起来的一种用于识别罪犯的生物识别技术。本文提出了一种基于局部不变特征的人脸素描图像识别模型。该模型采用尺度不变特征变换(Scale invariant feature Transform, SIFT)和局部二值模式(local Binary Patterns, LBP)两种局部不变特征提取方法提取照片和草图的局部特征。使用最小距离分类器和支持向量机(SVM)分类器将未知草图的特征与照片进行匹配。由于其高维特征,采用直接线性判别分析(Direct Linear Discriminant Analysis, Direct- lda)。我们的实验使用的是CHUK人脸素描数据库图像。实验结果表明,SIFT方法鲁棒性好,能较LBP提取出判别特征。此外,讨论并调整了SIFT和LBP的不同参数,以提取鲁棒性和判别性强的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1