Moment based spectrum sensing algorithm for cognitive radio networks with noise variance uncertainty

T. E. Bogale, L. Vandendorpe
{"title":"Moment based spectrum sensing algorithm for cognitive radio networks with noise variance uncertainty","authors":"T. E. Bogale, L. Vandendorpe","doi":"10.1109/CISS.2013.6552277","DOIUrl":null,"url":null,"abstract":"This paper proposes simple moment based spectrum sensing algorithm for cognitive radio networks in a flat fading channel. It is assumed that the transmitted signal samples are binary (quadrature) phase-shift keying BPSK (QPSK), Mary quadrature amplitude modulation (QAM) or continuous uniformly distributed random variables and the noise samples are independent and identically distributed circularly symmetric complex Gaussian random variables all with unknown (imperfect) variance. Under these assumptions, we propose a simple test statistics employing a ratio of fourth and second moments. For this statistics, we provide analytical expressions for both probability of false alarm (Pf) and probability of detection (Pd) in an additive white Gaussian noise (AWGN) channel. We confirm the theoretical expressions by computer simulation. Furthermore, under noise variance uncertainty, simulation results demonstrate that the proposed moment based detector gives better detection performance compared to that of energy detector in AWGN and Rayleigh fading channels.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes simple moment based spectrum sensing algorithm for cognitive radio networks in a flat fading channel. It is assumed that the transmitted signal samples are binary (quadrature) phase-shift keying BPSK (QPSK), Mary quadrature amplitude modulation (QAM) or continuous uniformly distributed random variables and the noise samples are independent and identically distributed circularly symmetric complex Gaussian random variables all with unknown (imperfect) variance. Under these assumptions, we propose a simple test statistics employing a ratio of fourth and second moments. For this statistics, we provide analytical expressions for both probability of false alarm (Pf) and probability of detection (Pd) in an additive white Gaussian noise (AWGN) channel. We confirm the theoretical expressions by computer simulation. Furthermore, under noise variance uncertainty, simulation results demonstrate that the proposed moment based detector gives better detection performance compared to that of energy detector in AWGN and Rayleigh fading channels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矩的噪声方差不确定认知无线电网络频谱感知算法
提出了一种简单的基于矩量的认知无线网络频谱感知算法。假设传输信号样本为二元(正交)相移键控BPSK (QPSK)、多重正交调幅(QAM)或连续均匀分布随机变量,噪声样本为方差未知(不完全)的独立同分布圆对称复高斯随机变量。在这些假设下,我们提出了一个简单的检验统计量,采用四阶矩和二阶矩的比率。对于这种统计,我们提供了加性高斯白噪声(AWGN)信道中虚警概率(Pf)和检测概率(Pd)的解析表达式。通过计算机模拟验证了理论表达式。此外,在噪声方差不确定的情况下,仿真结果表明,在AWGN和瑞利衰落信道中,基于矩的检测器比能量检测器具有更好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UCS-WN: An unbiased compressive sensing framework for weighted networks Degrees-of-freedom and interference tradeoff for a mix-Gaussian cognitive radio channel Audio-visual saliency map: Overview, basic models and hardware implementation Proactive versus reactive revisited: IPv6 routing for Low Power Lossy Networks Secrecy enhancement of block ciphered systems with deliberate noise in Non-coherent scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1