Spatio-temporal dual-attention network for view-invariant human action recognition

Kumie Gedamu, Getinet Yilma, Maregu Assefa, Melese Ayalew
{"title":"Spatio-temporal dual-attention network for view-invariant human action recognition","authors":"Kumie Gedamu, Getinet Yilma, Maregu Assefa, Melese Ayalew","doi":"10.1117/12.2643446","DOIUrl":null,"url":null,"abstract":"Due to the action occlusion and information loss caused by the view changes, view-invariant human action recognition is challenging in plenty of real-world applications. One possible solution to this problem is minimizing representation discrepancy in different views while learning discriminative feature representation for view-invariant action recognition. To solve the problem, we propose a Spatio-temporal Dual-Attention Network (SDA-Net) for view-invariant human action recognition. The SDA-Net is composed of a spatial/temporal self-attention and spatial/temporal cross-attention modules. The spatial/temporal self-attention module captures global long-range dependencies of action features. The cross-attention module is designed to learn view-invariant co-occurrence attention maps and generates discriminative features for a semantic representation of actions in different views. We exhaustively evaluate our approach on the NTU- 60, NTU-120, and UESTC datasets with multi-type evaluations, i.e., Cross-Subject, Cross-View, Cross-Set, and Arbitrary-view. Extensive experiment results demonstrate that our approach exceeds the state-of-the-art approaches with a significant margin in view-invariant human action recognition.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2643446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Due to the action occlusion and information loss caused by the view changes, view-invariant human action recognition is challenging in plenty of real-world applications. One possible solution to this problem is minimizing representation discrepancy in different views while learning discriminative feature representation for view-invariant action recognition. To solve the problem, we propose a Spatio-temporal Dual-Attention Network (SDA-Net) for view-invariant human action recognition. The SDA-Net is composed of a spatial/temporal self-attention and spatial/temporal cross-attention modules. The spatial/temporal self-attention module captures global long-range dependencies of action features. The cross-attention module is designed to learn view-invariant co-occurrence attention maps and generates discriminative features for a semantic representation of actions in different views. We exhaustively evaluate our approach on the NTU- 60, NTU-120, and UESTC datasets with multi-type evaluations, i.e., Cross-Subject, Cross-View, Cross-Set, and Arbitrary-view. Extensive experiment results demonstrate that our approach exceeds the state-of-the-art approaches with a significant margin in view-invariant human action recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视觉不变人类动作识别的时空双注意网络
由于视觉变化引起的动作遮挡和信息丢失,视觉不变的人体动作识别在实际应用中具有一定的挑战性。一种可能的解决方案是在学习区分特征表示的同时最小化不同视图的表示差异,以实现视图不变的动作识别。为了解决这一问题,我们提出了一种用于视觉不变人类动作识别的时空双注意网络(SDA-Net)。该网络由时空自注意模块和时空交叉注意模块组成。空间/时间自注意模块捕获动作特征的全局长期依赖关系。交叉注意模块旨在学习视图不变共现注意图,并生成不同视图下动作的语义表示的判别特征。我们在NTU- 60、NTU-120和UESTC数据集上进行了多种类型的评估,即跨主题、跨视图、跨集和任意视图。大量的实验结果表明,我们的方法在视觉不变的人类动作识别方面超过了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ship detection in optical remote sensing images based on saliency and rotation-invariant feature Deformable voxel grids for shape comparisons Correction of images projected on non-white surfaces based on deep neural network Self-supervision based super-resolution approach for light field refocused image Multi-visual information fusion and aggregation for video action classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1