S. Romphochai, A. Pichetjamroen, N. Teerakawanich, K. Hongesombut
{"title":"Coordinate operation of fuzzy logic voltage regulator and Bi-2212 SFCL for enhancing fault ride through capability of DFIG wind turbines","authors":"S. Romphochai, A. Pichetjamroen, N. Teerakawanich, K. Hongesombut","doi":"10.1109/IEECON.2017.8075758","DOIUrl":null,"url":null,"abstract":"With penetration of wind turbines, fault ride through capability is unconditionally considered as one of the most remarkable research area. Hence, this paper proposes the fault ride through capability improvement of DFIG wind turbines by using cooperative operation of fuzzy logic voltage regulator and Superconducting Fault Current Limiter (SFCL). BSCCO (Bi-2212) superconducting coil material is fully introduced to investigate in this paper. Under large disturbances such as faults, fuzzy logic voltage regulator is directly utilized to enhance a voltage dip at the DFIG terminal. Nevertheless, a high peak fault current cannot be deducted. For this reason, the Bi-2212 SFCL is used for fault current reduction simultaneously. As the simulation results, the proposed fuzzy logic voltage regulator and Bi-2212 SFCL combinative operation have a superior performance to diminish a peak current and improve fault ride through capability for Swedish grid code requirement.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With penetration of wind turbines, fault ride through capability is unconditionally considered as one of the most remarkable research area. Hence, this paper proposes the fault ride through capability improvement of DFIG wind turbines by using cooperative operation of fuzzy logic voltage regulator and Superconducting Fault Current Limiter (SFCL). BSCCO (Bi-2212) superconducting coil material is fully introduced to investigate in this paper. Under large disturbances such as faults, fuzzy logic voltage regulator is directly utilized to enhance a voltage dip at the DFIG terminal. Nevertheless, a high peak fault current cannot be deducted. For this reason, the Bi-2212 SFCL is used for fault current reduction simultaneously. As the simulation results, the proposed fuzzy logic voltage regulator and Bi-2212 SFCL combinative operation have a superior performance to diminish a peak current and improve fault ride through capability for Swedish grid code requirement.