Evaluating the effects of K-means clustering approach on medical images

Hossam M. Moftah, Walaa H. Elmasry, Nashwa El-Bendary, A. Hassanien, K. Nakamatsu
{"title":"Evaluating the effects of K-means clustering approach on medical images","authors":"Hossam M. Moftah, Walaa H. Elmasry, Nashwa El-Bendary, A. Hassanien, K. Nakamatsu","doi":"10.1109/ISDA.2012.6416581","DOIUrl":null,"url":null,"abstract":"Image segmentation is an essential process for most analysis tasks of medical images. That's because having good segmentation results is useful for both physicians and patients via providing important information for surgical planning and early disease detection. This paper aims at evaluating the performance of the K-means clustering algorithm. To achieve this, we applied the K-means approach on different medical images including liver CT and breast MRI images. Experimental results obtained show that the overall segmentation accuracy offered by the K-means approach is high compared to segmentation accuracy by the well-known normalized cuts segmentation approach.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Image segmentation is an essential process for most analysis tasks of medical images. That's because having good segmentation results is useful for both physicians and patients via providing important information for surgical planning and early disease detection. This paper aims at evaluating the performance of the K-means clustering algorithm. To achieve this, we applied the K-means approach on different medical images including liver CT and breast MRI images. Experimental results obtained show that the overall segmentation accuracy offered by the K-means approach is high compared to segmentation accuracy by the well-known normalized cuts segmentation approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评价k -均值聚类方法对医学图像的影响
图像分割是大多数医学图像分析任务的基本步骤。这是因为通过为手术计划和早期疾病检测提供重要信息,良好的分割结果对医生和患者都很有用。本文旨在评价k均值聚类算法的性能。为了实现这一点,我们将K-means方法应用于不同的医学图像,包括肝脏CT和乳房MRI图像。实验结果表明,与常用的归一化分割方法相比,K-means方法的整体分割精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1