{"title":"Passenger flow forecast of railway station based on improved LSTM","authors":"Kaibei Peng, W. Bai, Liuyi Wu","doi":"10.1109/CTISC49998.2020.00033","DOIUrl":null,"url":null,"abstract":"To solve the problem that the traditional neural network model lacks the ability to predict the complex nonlinear data, this paper constructed a short-term passenger flow prediction model based on the improved LSTM. Taking the AFC data of Beijing West Railway Station as the research object, the neural network model is trained by using the deep learning framework Keras. The prediction results of the improved LSTM network model is compared with BP network model and the standard LSTM network model. The results show that the improved LSTM model has better prediction results. In different periods of weekdays and weekends, the mean absolute percentage error (MAPE) of passenger flow prediction is lower than other models.","PeriodicalId":266384,"journal":{"name":"2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTISC49998.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
To solve the problem that the traditional neural network model lacks the ability to predict the complex nonlinear data, this paper constructed a short-term passenger flow prediction model based on the improved LSTM. Taking the AFC data of Beijing West Railway Station as the research object, the neural network model is trained by using the deep learning framework Keras. The prediction results of the improved LSTM network model is compared with BP network model and the standard LSTM network model. The results show that the improved LSTM model has better prediction results. In different periods of weekdays and weekends, the mean absolute percentage error (MAPE) of passenger flow prediction is lower than other models.