RoadCare

Saurabh Tiwari, Ravi Bhandari, B. Raman
{"title":"RoadCare","authors":"Saurabh Tiwari, Ravi Bhandari, B. Raman","doi":"10.1145/3378393.3402284","DOIUrl":null,"url":null,"abstract":"Roads form a critical part of any region's infrastructure. Their constant monitoring and maintenance is thus essential. Traditional monitoring mechanisms are heavy-weight, and hence have insufficient coverage. In this paper, we explore the use of crowd-sourced intelligent measurements from commuters' smart-phone sensors. Specifically, we propose a deep-learning based approach to road surface quality monitoring, using accelerometer and GPS sensor readings. Through extensive data collection of over 36 hours on different kinds of roads, and subsequent evaluation based on this, we show that the approach can achieve high accuracy (98.5%) in a three-way classification of road surface quality. We also show how the classification can be extended to a finer grained 11-point scale of road quality. The model is also efficient: it can be implemented on today's smart-phones, thus making it practical. Our approach, called RoadCare, enables several useful smart-city applications such as spatio-temporal monitoring of the city's roads, early warning of bad road conditions, as well as choosing the \"smoothest\" road route to a destination.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Roads form a critical part of any region's infrastructure. Their constant monitoring and maintenance is thus essential. Traditional monitoring mechanisms are heavy-weight, and hence have insufficient coverage. In this paper, we explore the use of crowd-sourced intelligent measurements from commuters' smart-phone sensors. Specifically, we propose a deep-learning based approach to road surface quality monitoring, using accelerometer and GPS sensor readings. Through extensive data collection of over 36 hours on different kinds of roads, and subsequent evaluation based on this, we show that the approach can achieve high accuracy (98.5%) in a three-way classification of road surface quality. We also show how the classification can be extended to a finer grained 11-point scale of road quality. The model is also efficient: it can be implemented on today's smart-phones, thus making it practical. Our approach, called RoadCare, enables several useful smart-city applications such as spatio-temporal monitoring of the city's roads, early warning of bad road conditions, as well as choosing the "smoothest" road route to a destination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Features from Online Forums to Meet Social Needs of Breast Cancer Patients ICTs as Enablers of Resilient Social Capital for Ethnic Peace Persuasive information campaign to save water in Universities: An option for water-stressed areas? The "opaque panopticon": Why publishing data online doesn't make the State transparent? The case of India's livelihood program Competitive Cities: Establishing a Classification Model using Data Science-related Jobs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1