Victor Sanchez, Francesc Aulí Llinàs, Joan Bartrina-Rapesta, J. Serra-Sagristà
{"title":"HEVC-based lossless compression of Whole Slide pathology images","authors":"Victor Sanchez, Francesc Aulí Llinàs, Joan Bartrina-Rapesta, J. Serra-Sagristà","doi":"10.1109/GlobalSIP.2014.7032126","DOIUrl":null,"url":null,"abstract":"This paper proposes an HEVC-based method for lossless compression of Whole Slide pathology Images (WSIs). Based on the observation that WSIs usually feature a high number of edges and multidirectional patterns due to the great variety of cellular structures and tissues depicted, we combine the advantages of sample-by-sample differential pulse code modulation (SbS-DPCM) and edge prediction into the intra coding process. The objective is to enhance the prediction performance where strong edge information is encountered. This paper also proposes an implementation of the decoding process that maintains the block-wise coding structure of HEVC when SbS-DPCM and edge prediction are employed. Experimental results on various WSIs show that the proposed method attains average bit-rate savings of 7.67%.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper proposes an HEVC-based method for lossless compression of Whole Slide pathology Images (WSIs). Based on the observation that WSIs usually feature a high number of edges and multidirectional patterns due to the great variety of cellular structures and tissues depicted, we combine the advantages of sample-by-sample differential pulse code modulation (SbS-DPCM) and edge prediction into the intra coding process. The objective is to enhance the prediction performance where strong edge information is encountered. This paper also proposes an implementation of the decoding process that maintains the block-wise coding structure of HEVC when SbS-DPCM and edge prediction are employed. Experimental results on various WSIs show that the proposed method attains average bit-rate savings of 7.67%.