Pao-Chuan Shih, G. Rughoobur, P. Xiang, Kai Liu, K. Cheng, A. Akinwande, T. Palacios
{"title":"GaN Nanowire Field Emitters with a Self-Aligned Gate Process","authors":"Pao-Chuan Shih, G. Rughoobur, P. Xiang, Kai Liu, K. Cheng, A. Akinwande, T. Palacios","doi":"10.1109/DRC50226.2020.9135161","DOIUrl":null,"url":null,"abstract":"Electron devices based on field emitters (FE) are promising for harsh-environments and high-frequency electronics thanks to their radiation hardness and scattering-free electron transport. Si field emitters with a sub-10 nm tip radius and self-aligned gates have demonstrated sub-20 V turn-on operation [1] , [2] . However, stability and operating voltage still need further improvement to enable circuit applications. III-Nitrides are excellent candidates to overcome these issues because of their strong bonding energies [3] and tunable electron affinities [4] . So far, there are few demonstrations of III-Nitride field emitters with self-aligned gates, which are critical to reduce the gate-emitter voltage (V GE ). In this work, a novel GaN nanowire (NW) field emitter based on self-aligned gates is demonstrated to reduce the gate-emitter turn-on voltage (V GE, ON ) below 30 V. To the best of our knowledge, this represents the lowest control voltage in any GaN field emitter device, opening an opportunity for using III-N in integrated field emitters.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Electron devices based on field emitters (FE) are promising for harsh-environments and high-frequency electronics thanks to their radiation hardness and scattering-free electron transport. Si field emitters with a sub-10 nm tip radius and self-aligned gates have demonstrated sub-20 V turn-on operation [1] , [2] . However, stability and operating voltage still need further improvement to enable circuit applications. III-Nitrides are excellent candidates to overcome these issues because of their strong bonding energies [3] and tunable electron affinities [4] . So far, there are few demonstrations of III-Nitride field emitters with self-aligned gates, which are critical to reduce the gate-emitter voltage (V GE ). In this work, a novel GaN nanowire (NW) field emitter based on self-aligned gates is demonstrated to reduce the gate-emitter turn-on voltage (V GE, ON ) below 30 V. To the best of our knowledge, this represents the lowest control voltage in any GaN field emitter device, opening an opportunity for using III-N in integrated field emitters.